Newer
Older
from vtk.util import numpy_support
def main():
# ------------------------------------------------------------
# Create the surface, lookup tables, contour filter etc.
# ------------------------------------------------------------
# desired_surface = 'ParametricTorus'
# desired_surface = 'Plane'
desired_surface = 'RandomHills'
# desired_surface = 'Sphere'
# desired_surface = 'Torus'
surface = desired_surface.lower()
available_surfaces = ['parametrictorus', 'plane', 'randomhills', 'sphere', 'torus']
if surface not in available_surfaces:
print('No surface specified.')
return
if surface == 'parametrictorus':
src = make_parametric_torus()
elif surface == 'plane':
src = make_elevations(make_plane())
elif surface == 'randomhills':
src = make_parametric_hills()
elif surface == 'sphere':
src = make_elevations(make_sphere())
else:
print('No surface specified.')
return
print(desired_surface)
curvatures = ComputeCurvatures(src)
curvatures.update()
src.GetPointData().SetActiveScalars('Gauss_Curvature')
scalar_range_curvatures = src.GetPointData().GetScalars('Gauss_Curvature').GetRange()
scalar_range_elevation = src.GetPointData().GetScalars('Elevation').GetRange()
lut = make_categorical_lut()
lut1 = make_diverging_lut()
lut.SetTableRange(scalar_range_curvatures)
lut1.SetTableRange(scalar_range_elevation)
number_of_bands = lut.GetNumberOfTableValues()
bands = make_bands(scalar_range_curvatures, number_of_bands, False)
if surface == 'randomhills':
# These are my custom bands.
# Generated by first running:
# bands = make_bands(scalar_range_curvatures, number_of_bands, False)
# then:
# freq = frequencies(bands, src)
# print_bands_frequencies(bands, freq)
# Finally using the output to create this table:
# my_bands = [
# [-0.630, -0.190], [-0.190, -0.043], [-0.043, -0.0136],
# [-0.0136, 0.0158], [0.0158, 0.0452], [0.0452, 0.0746],
# [0.0746, 0.104], [0.104, 0.251], [0.251, 1.131]]
# This demonstrates that the gaussian curvature of the surface
# is mostly planar with some hyperbolic regions (saddle points)
# and some spherical regions.
[-0.630, -0.190], [-0.190, -0.043], [-0.043, 0.0452], [0.0452, 0.0746],
[0.0746, 0.104], [0.104, 0.251], [0.251, 1.131]]
# Comment this out if you want to see how allocating
# equally spaced bands works.
bands = make_custom_bands(scalar_range_curvatures, number_of_bands, my_bands)
# bands = make_bands(scalar_range_curvatures, number_of_bands, False)
# Adjust the number of table values
lut.SetNumberOfTableValues(len(bands))
# Let's do a frequency table.
# The number of scalars in each band.
freq = frequencies(bands, src)
min_key = min(freq.keys())
max_key = max(freq.keys())
if surface == 'sphere':
freq[0] = 0
first, last = adjust_frequency_ranges(freq)
for idx in range(min_key, first):
freq.pop(idx)
bands.pop(idx)
for idx in range(last + 1, max_key + 1):
freq.popitem()
bands.popitem()
old_keys = freq.keys()
adj_freq = OrderedDict()
adj_bands = OrderedDict()
for idx, k in enumerate(old_keys):
adj_freq[idx] = freq[k]
adj_bands[idx] = bands[k]
# print_bands_frequencies(bands, freq)
print_bands_frequencies(adj_bands, adj_freq)
min_key = min(adj_freq.keys())
max_key = max(adj_freq.keys())
scalar_range_curvatures = (adj_bands[min_key][0], adj_bands[max_key][2])
lut.SetTableRange(scalar_range_curvatures)
lut.SetNumberOfTableValues(len(adj_bands))
# We will use the midpoint of the band as the label.
labels = []
for k in adj_bands:
labels.append('{:4.2f}'.format(adj_bands[k][1]))
# Annotate
values = vtk.vtkVariantArray()
for i in range(len(labels)):
values.InsertNextValue(vtk.vtkVariant(labels[i]))
for i in range(values.GetNumberOfTuples()):
lut.SetAnnotation(i, values.GetValue(i).ToString())
# Create a lookup table with the colors reversed.
lutr = reverse_lut(lut)
# Create the contour bands.
bcf = vtk.vtkBandedPolyDataContourFilter()
bcf.SetInputData(src)
# Use either the minimum or maximum value for each band.
for k in adj_bands:
bcf.SetValue(k, adj_bands[k][2])
# We will use an indexed lookup table.
bcf.SetScalarModeToIndex()
bcf.GenerateContourEdgesOn()
# Generate the glyphs on the original surface.
glyph = make_glyphs(src, False)
# ------------------------------------------------------------
# Create the mappers and actors
# ------------------------------------------------------------
colors = vtk.vtkNamedColors()
# Set the background color.
colors.SetColor('BkgColor', [179, 204, 255, 255])
colors.SetColor("ParaViewBkg", [82, 87, 110, 255])
src_mapper = vtk.vtkPolyDataMapper()
src_mapper.SetInputConnection(bcf.GetOutputPort())
src_mapper.SetScalarRange(scalar_range_curvatures)
src_mapper.SetLookupTable(lut)
src_mapper.SetScalarModeToUseCellData()
src_actor = vtk.vtkActor()
src_actor.SetMapper(src_mapper)
# Create contour edges
edge_mapper = vtk.vtkPolyDataMapper()
edge_mapper.SetInputData(bcf.GetContourEdgesOutput())
edge_mapper.SetResolveCoincidentTopologyToPolygonOffset()
edge_actor = vtk.vtkActor()
edge_actor.SetMapper(edge_mapper)
edge_actor.GetProperty().SetColor(colors.GetColor3d('Black'))
glyph_mapper = vtk.vtkPolyDataMapper()
glyph_mapper.SetInputConnection(glyph.GetOutputPort())
glyph_mapper.SetScalarModeToUsePointFieldData()
glyph_mapper.SetColorModeToMapScalars()
glyph_mapper.ScalarVisibilityOn()
glyph_mapper.SelectColorArray('Elevation')
# Colour by scalars.
glyph_mapper.SetScalarRange(scalar_range_elevation)
glyph_actor = vtk.vtkActor()
glyph_actor.SetMapper(glyph_mapper)
window_width = 800
window_height = 800
scalar_bar = vtk.vtkScalarBarActor()
# This LUT puts the lowest value at the top of the scalar bar.
# scalar_bar->SetLookupTable(lut);
# Use this LUT if you want the highest value at the top.
scalar_bar.SetLookupTable(lutr)
scalar_bar.SetTitle('Gaussian\nCurvature')
scalar_bar.GetTitleTextProperty().SetColor(
scalar_bar.GetLabelTextProperty().SetColor(
scalar_bar.GetAnnotationTextProperty().SetColor(
colors.GetColor3d('AliceBlue'))
scalar_bar.UnconstrainedFontSizeOn()
scalar_bar.SetMaximumWidthInPixels(window_width // 8)
scalar_bar.SetMaximumHeightInPixels(window_height // 3)
scalar_bar.SetPosition(0.85, 0.05)
scalar_bar_elev = vtk.vtkScalarBarActor()
# This LUT puts the lowest value at the top of the scalar bar.
# scalar_bar_elev->SetLookupTable(lut);
# Use this LUT if you want the highest value at the top.
scalar_bar_elev.SetLookupTable(lut1)
scalar_bar_elev.SetTitle('Elevation')
scalar_bar_elev.GetTitleTextProperty().SetColor(
colors.GetColor3d('AliceBlue'))
scalar_bar_elev.GetLabelTextProperty().SetColor(
colors.GetColor3d('AliceBlue'))
scalar_bar_elev.GetAnnotationTextProperty().SetColor(
colors.GetColor3d('AliceBlue'))
scalar_bar_elev.UnconstrainedFontSizeOn()
scalar_bar_elev.SetNumberOfLabels(5)
scalar_bar_elev.SetMaximumWidthInPixels(window_width // 8)
scalar_bar_elev.SetMaximumHeightInPixels(window_height // 3)
# scalar_bar_elev.SetBarRatio(scalar_bar_elev.GetBarRatio() * 0.5)
scalar_bar_elev.SetPosition(0.85, 0.4)
# ------------------------------------------------------------
# Create the RenderWindow, Renderer and Interactor
# ------------------------------------------------------------
ren = vtk.vtkRenderer()
ren_win = vtk.vtkRenderWindow()
iren = vtk.vtkRenderWindowInteractor()
style = vtk.vtkInteractorStyleTrackballCamera()
iren.SetInteractorStyle(style)
ren_win.AddRenderer(ren)
# Important: The interactor must be set prior to enabling the widget.
iren.SetRenderWindow(ren_win)
cam_orient_manipulator = vtk.vtkCameraOrientationWidget()
cam_orient_manipulator.SetParentRenderer(ren)
# Enable the widget.
cam_orient_manipulator.On()
# add actors
ren.AddViewProp(src_actor)
ren.AddViewProp(edge_actor)
ren.AddViewProp(glyph_actor)
ren.AddActor2D(scalar_bar)
ren.SetBackground(colors.GetColor3d('ParaViewBkg'))
ren_win.SetSize(window_width, window_height)
ren_win.SetWindowName('CurvatureBandsWithGlyphs')
if desired_surface == "RandomHills":
camera = ren.GetActiveCamera()
camera.SetPosition(10.9299, 59.1505, 24.9823)
camera.SetFocalPoint(2.21692, 7.97545, 7.75135)
camera.SetViewUp(-0.230136, 0.345504, -0.909761)
camera.SetDistance(54.6966)
camera.SetClippingRange(36.3006, 77.9852)
ren_win.Render()
iren.Start()
def make_bands(d_r, number_of_bands, nearest_integer):
:param: d_r - [min, max] the range that is to be covered by the bands.
:param: number_of_bands - the number of bands, a positive integer.
:param: nearest_integer - if True then [floor(min), ceil(max)] is used.
:return: A dictionary consisting of the band number and [min, midpoint, max] for each band.
if (d_r[1] < d_r[0]) or (number_of_bands <= 0):
x = list(d_r)
if nearest_integer:
x[0] = math.floor(x[0])
x[1] = math.ceil(x[1])
dx = (x[1] - x[0]) / float(number_of_bands)
b = [x[0], x[0] + dx / 2.0, x[0] + dx]
i = 0
b = [b[0] + dx, b[1] + dx, b[2] + dx]
i += 1
return bands
def make_custom_bands(d_r, number_of_bands, my_bands):
You need to specify each band as an list [r1, r2] where r1 < r2 and
append these to a list.
like this: [[r1, r2], [r2, r3], [r3, r4]...]
:param: d_r - [min, max] the range that is to be covered by the bands.
:param: number_of_bands - the number of bands, a positive integer.
:return: A dixtionary consisting of band number and [min, midpoint, max] for each band.
if (d_r[1] < d_r[0]) or (number_of_bands <= 0):
x = my_bands
# Determine the index of the range minimum and range maximum.
idx_min = 0
for idx in range(0, len(my_bands)):
if my_bands[idx][1] > d_r[0] >= my_bands[idx][0]:
idx_min = idx
break
for idx in range(len(my_bands) - 1, -1, -1):
if my_bands[idx][1] > d_r[1] >= my_bands[idx][0]:
idx_max = idx
break
# Set the minimum to match the range minimum.
x[idx_min][0] = d_r[0]
x[idx_max][1] = d_r[1]
x = x[idx_min: idx_max + 1]
for idx, e in enumerate(x):
bands[idx] = [e[0], e[0] + (e[1] - e[0]) / 2, e[1]]
def frequencies(bands, src):
Count the number of scalars in each band.
:param: bands - the bands.
:param: src - the vtkPolyData source.
:return: The frequencies of the scalars in each band.
tuples = src.GetPointData().GetScalars().GetNumberOfTuples()
for i in range(tuples):
x = src.GetPointData().GetScalars().GetTuple1(i)
for j in range(len(bands)):
if x <= bands[j][2]:
freq[j] = freq[j] + 1
break
return freq
def adjust_frequency_ranges(freq):
"""
Get the indices of the first and last non-zero elements.
:param freq: The frequency dictionary.
:return: The indices of the first and last non-zero elements.
"""
first = 0
for k, v in freq.items():
if v != 0:
first = k
break
rev_keys = list(freq.keys())[::-1]
last = rev_keys[0]
for idx in list(freq.keys())[::-1]:
if freq[idx] != 0:
last = idx
break
return first, last
Generate elevations over the surface.
:param: src - the vtkPolyData source.
:return: - vtkPolyData source with elevations.
"""
bounds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
if abs(bounds[2]) < 1.0e-8 and abs(bounds[3]) < 1.0e-8:
bounds[3] = bounds[2] + 1
elev_filter = vtk.vtkElevationFilter()
elev_filter.SetInputData(src)
elev_filter.SetLowPoint(0, bounds[2], 0)
elev_filter.SetHighPoint(0, bounds[3], 0)
elev_filter.SetScalarRange(bounds[2], bounds[3])
elev_filter.Update()
return elev_filter.GetPolyDataOutput()
Make a parametric hills surface as the source.
:return: vtkPolyData with normal and scalar data.
fn = vtk.vtkParametricRandomHills()
fn.AllowRandomGenerationOn()
fn.SetRandomSeed(1)
fn.SetNumberOfHills(30)
# Make the normals face out of the surface.
# Not needed with VTK 8.0 or later.
# if fn.GetClassName() == 'vtkParametricRandomHills':
# fn.ClockwiseOrderingOff()
source = vtk.vtkParametricFunctionSource()
source.SetParametricFunction(fn)
source.SetUResolution(50)
source.SetVResolution(50)
source.SetScalarModeToZ()
source.Update()
# Name the arrays (not needed in VTK 6.2+ for vtkParametricFunctionSource).
# source.GetOutput().GetPointData().GetNormals().SetName('Normals')
# source.GetOutput().GetPointData().GetScalars().SetName('Scalars')
# Rename the scalars to 'Elevation' since we are using the Z-scalars as elevations.
source.GetOutput().GetPointData().GetScalars().SetName('Elevation')
transform = vtk.vtkTransform()
transform.Translate(0.0, 5.0, 15.0)
transform.RotateX(-90.0)
transform_filter = vtk.vtkTransformPolyDataFilter()
transform_filter.SetInputConnection(source.GetOutputPort())
transform_filter.SetTransform(transform)
transform_filter.Update()
return transform_filter.GetOutput()
def make_parametric_torus():
Make a parametric torus as the source.
:return: vtkPolyData with normal and scalar data.
fn = vtk.vtkParametricTorus()
fn.SetRingRadius(5)
fn.SetCrossSectionRadius(2)
source = vtk.vtkParametricFunctionSource()
source.SetParametricFunction(fn)
source.SetUResolution(50)
source.SetVResolution(50)
source.SetScalarModeToZ()
source.Update()
# Name the arrays (not needed in VTK 6.2+ for vtkParametricFunctionSource).
# source.GetOutput().GetPointData().GetNormals().SetName('Normals')
# source.GetOutput().GetPointData().GetScalars().SetName('Scalars')
# Rename the scalars to 'Elevation' since we are using the Z-scalars as elevations.
source.GetOutput().GetPointData().GetScalars().SetName('Elevation')
transform = vtk.vtkTransform()
transform.RotateX(-90.0)
transform_filter = vtk.vtkTransformPolyDataFilter()
transform_filter.SetInputConnection(source.GetOutputPort())
transform_filter.SetTransform(transform)
transform_filter.Update()
return transform_filter.GetOutput()
:return: vtkPolyData with normal and scalar data.
source = vtk.vtkPlaneSource()
source.SetOrigin(-10.0, -10.0, 0.0)
source.SetPoint2(-10.0, 10.0, 0.0)
source.SetPoint1(10.0, -10.0, 0.0)
source.SetXResolution(20)
source.SetYResolution(20)
transform = vtk.vtkTransform()
transform.RotateX(-90.0)
transform_filter = vtk.vtkTransformPolyDataFilter()
transform_filter.SetInputConnection(source.GetOutputPort())
transform_filter.SetTransform(transform)
transform_filter.Update()
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# We have a m x n array of quadrilaterals arranged as a regular tiling in a
# plane. So pass it through a triangle filter since the curvature filter only
# operates on polys.
tri = vtk.vtkTriangleFilter()
tri.SetInputConnection(transform_filter.GetOutputPort())
# Pass it though a CleanPolyDataFilter and merge any points which
# are coincident, or very close
cleaner = vtk.vtkCleanPolyData()
cleaner.SetInputConnection(tri.GetOutputPort())
cleaner.SetTolerance(0.005)
cleaner.Update()
return cleaner.GetOutput()
def make_sphere():
source = vtk.vtkSphereSource()
source.SetCenter(0.0, 0.0, 0.0)
source.SetRadius(10.0)
source.SetThetaResolution(32)
source.SetPhiResolution(32)
source.Update()
return source.GetOutput()
def make_torus():
"""
Make a torus as the source.
:return: vtkPolyData with normal and scalar data.
"""
source = vtk.vtkSuperquadricSource()
source.SetCenter(0.0, 0.0, 0.0)
source.SetScale(1.0, 1.0, 1.0)
source.SetPhiResolution(64)
source.SetThetaResolution(64)
source.SetThetaRoundness(1)
source.SetThickness(0.5)
source.SetSize(10)
source.SetToroidal(1)
# The quadric is made of strips, so pass it through a triangle filter as
# the curvature filter only operates on polys
tri = vtk.vtkTriangleFilter()
tri.SetInputConnection(source.GetOutputPort())
# The quadric has nasty discontinuities from the way the edges are generated
# so let's pass it though a CleanPolyDataFilter and merge any points which
# are coincident, or very close
cleaner = vtk.vtkCleanPolyData()
cleaner.SetInputConnection(tri.GetOutputPort())
cleaner.SetTolerance(0.005)
cleaner.Update()
return cleaner.GetOutput()
def clipper(src, dx, dy, dz):
Clip a vtkPolyData source.
A cube is made whose size corresponds the the bounds of the source.
Then each side is shrunk by the appropriate dx, dy or dz. After
this operation the source is clipped by the cube.
:param: src - the vtkPolyData source
:param: dx - the amount to clip in the x-direction
:param: dy - the amount to clip in the y-direction
:param: dz - the amount to clip in the z-direction
:return: vtkPolyData.
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
src.GetBounds(bounds)
plane1 = vtk.vtkPlane()
plane1.SetOrigin(bounds[0] + dx, 0, 0)
plane1.SetNormal(1, 0, 0)
plane2 = vtk.vtkPlane()
plane2.SetOrigin(bounds[1] - dx, 0, 0)
plane2.SetNormal(-1, 0, 0)
plane3 = vtk.vtkPlane()
plane3.SetOrigin(0, bounds[2] + dy, 0)
plane3.SetNormal(0, 1, 0)
plane4 = vtk.vtkPlane()
plane4.SetOrigin(0, bounds[3] - dy, 0)
plane4.SetNormal(0, -1, 0)
plane5 = vtk.vtkPlane()
plane5.SetOrigin(0, 0, bounds[4] + dz)
plane5.SetNormal(0, 0, 1)
plane6 = vtk.vtkPlane()
plane6.SetOrigin(0, 0, bounds[5] - dz)
plane6.SetNormal(0, 0, -1)
clip_function = vtk.vtkImplicitBoolean()
clip_function.SetOperationTypeToUnion()
clip_function.AddFunction(plane1)
clip_function.AddFunction(plane2)
clip_function.AddFunction(plane3)
clip_function.AddFunction(plane4)
clip_function.AddFunction(plane5)
clip_function.AddFunction(plane6)
pd_clipper = vtk.vtkClipPolyData()
pd_clipper.SetClipFunction(clip_function)
pd_clipper.SetInputData(src)
pd_clipper.GenerateClipScalarsOff()
pd_clipper.GenerateClippedOutputOff()
# pd_clipper.GenerateClippedOutputOn()
pd_clipper.Update()
return pd_clipper.GetOutput()
def calculate_curvatures(src):
The source must be triangulated.
:param: src - the source.
:return: vtkPolyData with normal and scalar data representing curvatures.
curvature = vtk.vtkCurvatures()
curvature.SetCurvatureTypeToGaussian()
curvature.SetInputData(src)
curvature.Update()
return curvature.GetOutput()
def get_color_series():
color_series = vtk.vtkColorSeries()
# Select a color scheme.
# color_series_enum = color_series.BREWER_DIVERGING_BROWN_BLUE_GREEN_9
# color_series_enum = color_series.BREWER_DIVERGING_SPECTRAL_10
# color_series_enum = color_series.BREWER_DIVERGING_SPECTRAL_3
# color_series_enum = color_series.BREWER_DIVERGING_PURPLE_ORANGE_9
# color_series_enum = color_series.BREWER_SEQUENTIAL_BLUE_PURPLE_9
# color_series_enum = color_series.BREWER_SEQUENTIAL_BLUE_GREEN_9
color_series_enum = color_series.BREWER_QUALITATIVE_SET3
# color_series_enum = color_series.CITRUS
color_series.SetColorScheme(color_series_enum)
return color_series
def make_categorical_lut():
Make a lookup table using vtkColorSeries.
:return: An indexed (categorical) lookup table.
color_series = get_color_series()
# Make the lookup table.
lut = vtk.vtkLookupTable()
color_series.BuildLookupTable(lut, color_series.CATEGORICAL)
lut.SetNanColor(0, 0, 0, 1)
return lut
Make a lookup table using vtkColorSeries.
:return: An ordinal (not indexed) lookup table.
color_series = get_color_series()
# Make the lookup table.
lut = vtk.vtkLookupTable()
color_series.BuildLookupTable(lut, color_series.ORDINAL)
lut.SetNanColor(0, 0, 0, 1)
return lut
See: [Diverging Color Maps for Scientific Visualization](https://www.kennethmoreland.com/color-maps/)
start point midPoint end point
cool to warm: 0.230, 0.299, 0.754 0.865, 0.865, 0.865 0.706, 0.016, 0.150
purple to orange: 0.436, 0.308, 0.631 0.865, 0.865, 0.865 0.759, 0.334, 0.046
green to purple: 0.085, 0.532, 0.201 0.865, 0.865, 0.865 0.436, 0.308, 0.631
blue to brown: 0.217, 0.525, 0.910 0.865, 0.865, 0.865 0.677, 0.492, 0.093
green to red: 0.085, 0.532, 0.201 0.865, 0.865, 0.865 0.758, 0.214, 0.233
:return:
ctf = vtk.vtkColorTransferFunction()
ctf.SetColorSpaceToDiverging()
# Cool to warm.
ctf.AddRGBPoint(0.0, 0.085, 0.532, 0.201)
ctf.AddRGBPoint(0.5, 0.865, 0.865, 0.865)
ctf.AddRGBPoint(1.0, 0.758, 0.214, 0.233)
table_size = 256
lut.SetNumberOfTableValues(table_size)
lut.Build()
for i in range(0, table_size):
rgba = list(ctf.GetColor(float(i) / table_size))
rgba.append(1)
lut.SetTableValue(i, rgba)
Create a lookup table with the colors reversed.
:param: lut - An indexed lookup table.
:return: The reversed indexed lookup table.
lutr = vtk.vtkLookupTable()
lutr.DeepCopy(lut)
t = lut.GetNumberOfTableValues() - 1
rev_range = reversed(list(range(t + 1)))
for i in rev_range:
rgba = [0.0] * 3
rev_range = reversed(list(range(t + 1)))
for i in rev_range:
lutr.SetAnnotation(t - i, lut.GetAnnotation(i))
return lutr
def make_glyphs(src, reverse_normals):
You may need to adjust the parameters for mask_pts, arrow and glyph for a
nice appearance.
:param: src - the surface to glyph.
:param: reverse_normals - if True the normals on the surface are reversed.
# Sometimes the contouring algorithm can create a volume whose gradient
# vector and ordering of polygon (using the right hand rule) are
# inconsistent. vtkReverseSense cures this problem.
reverse = vtk.vtkReverseSense()
# Choose a random subset of points.
mask_pts = vtk.vtkMaskPoints()
mask_pts.SetOnRatio(5)
mask_pts.RandomModeOn()
reverse.SetInputData(src)
reverse.ReverseCellsOn()
reverse.ReverseNormalsOn()
mask_pts.SetInputConnection(reverse.GetOutputPort())
# Source for the glyph filter
arrow = vtk.vtkArrowSource()
arrow.SetTipResolution(16)
arrow.SetTipLength(0.3)
arrow.SetTipRadius(0.1)
glyph = vtk.vtkGlyph3D()
glyph.SetSourceConnection(arrow.GetOutputPort())
glyph.SetInputConnection(mask_pts.GetOutputPort())
glyph.SetColorModeToColorByVector()
glyph.SetScaleModeToScaleByVector()
glyph.OrientOn()
glyph.Update()
return glyph
s = f'Bands:\n'
for k, v in bands.items():
for j, q in enumerate(v):
s += f'{k:4d} ['
if j == len(v) - 1:
s += f'{q:8.3f}]\n'
else:
s += f'{q:8.3f}, '
print(s)
def print_frequencies(freq):
s = ''
for i, p in freq.items():
if i == 0:
s += f'Frequencies: ['
if i == len(freq) - 1:
s += f'{i}: {p} ]'
else:
s += f'{i}: {p}, '
print(s)
def print_bands_frequencies(bands, freq):
if len(bands) != len(freq):
print('Bands and frequencies must be the same size.')
return
s = f'Bands & frequencies:\n'
for k, v in bands.items():
for j, q in enumerate(v):
s += f'{k:4d} ['
if j == len(v) - 1:
s += f'{q:8.3f}]: {freq[k]:6d}\n'
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
else:
s += f'{q:8.3f}, '
print(s)
class ComputeCurvatures:
"""
This class takes a vtkPolyData source and:
- calculates Gaussian and Mean curvatures,
- adjusts curvatures along the edges using a weighted average,
- inserts the adjusted curvatures into the vtkPolyData source.
Additional methods are provided for setting bounds and precision.
"""
def __init__(self, polydata_source, gauss_eps=1.0e-08, mean_eps=1.0e-08):
"""
:param polydata_source: The polydata source.
:param gauss_eps: Gaussian curvatures less than this will be set to zero.
:param mean_eps: Mean curvatures less than this will be set to zero.
"""
self.source = polydata_source
self.curvature_type = ['Gauss_Curvature', 'Mean_Curvature']
self.adjusted_curvatures = dict()
self.bounds = {'Gauss_Curvature': [0.0, 0.0], 'Mean_Curvature': [0.0, 0.0]}
self.bounds_state = {'Gauss_Curvature': False, 'Mean_Curvature': False}
self.epsilons = {'Gauss_Curvature': gauss_eps, 'Mean_Curvature': mean_eps}
def update(self):
for curvature_name in self.curvature_type:
self.compute_curvature_and_fix_up_boundary(curvature_name)
# Set small values to zero.
if self.epsilons[curvature_name] != 0.0:
eps = abs(self.epsilons[curvature_name])
self.adjusted_curvatures[curvature_name] = np.where(
abs(self.adjusted_curvatures[curvature_name]) < eps, 0,
self.adjusted_curvatures[curvature_name])
# Set upper and lower bounds.
if self.bounds_state[curvature_name]:
lower_bound = self.bounds[curvature_name][0]
self.adjusted_curvatures[curvature_name] = np.where(
self.adjusted_curvatures[curvature_name] < lower_bound, lower_bound,
self.adjusted_curvatures[curvature_name])
upper_bound = self.bounds[curvature_name][1]
self.adjusted_curvatures[curvature_name] = np.where(
self.adjusted_curvatures[curvature_name] > upper_bound, upper_bound,
self.adjusted_curvatures[curvature_name])
self.update_curvatures(curvature_name)
def compute_curvature_and_fix_up_boundary(self, curvature_name):
# Curvature as vtkPolyData.
curvature_data = self.compute_curvature(curvature_name)
# Curvature as python list.
curvature = self.extract_data(curvature_data, curvature_name)
# Ids of the boundary points.
p_ids = self.extract_boundary_ids()
# Remove duplicate Ids.
p_ids_set = set(p_ids)
# Iterate over the edge points and compute the curvature as the weighted
# average of the neighbors.
count_invalid = 0
for p_id in p_ids:
p_ids_neighbors = self.point_neighborhood(p_id)
# Keep only interior points.
p_ids_neighbors -= p_ids_set
# Compute distances and extract curvature values.
curvs = [curvature[p_id_n] for p_id_n in p_ids_neighbors]
dists = [self.compute_distance(p_id_n, p_id) for p_id_n in p_ids_neighbors]
curvs = np.array(curvs)
dists = np.array(dists)
curvs = curvs[dists > 0]
dists = dists[dists > 0]
if len(curvs) > 0:
weights = 1 / np.array(dists)
weights /= weights.sum()
new_curv = np.dot(curvs, weights)
else:
# Corner case.
count_invalid += 1
new_curv = 0
# Set the new curvature value.
curvature[p_id] = new_curv
self.adjusted_curvatures[curvature_name] = np.array(curvature)
def compute_curvature(self, curvature_name):
curvature_filter = vtk.vtkCurvatures()
curvature_filter.SetInputData(self.source)
if 'gaus' in curvature_name.lower():
curvature_filter.SetCurvatureTypeToGaussian()
else:
curvature_filter.SetCurvatureTypeToMean()
curvature_filter.Update()
return curvature_filter.GetOutput()
@staticmethod
def extract_data(curvature_data, curvature_name):
array = curvature_data.GetPointData().GetAbstractArray(curvature_name)
n = curvature_data.GetNumberOfPoints()
data = []
for i in range(n):
data.append(array.GetVariantValue(i).ToDouble())
return data
def extract_boundary_ids(self):
"""
See here: https://discourse.vtk.org/t/2530/3
"""
array_name = 'ids'
id_filter = vtk.vtkIdFilter()
id_filter.SetInputData(self.source)
id_filter.SetPointIds(True)
id_filter.SetCellIds(False)
id_filter.SetPointIdsArrayName(array_name)
id_filter.SetCellIdsArrayName(array_name)
id_filter.Update()
edges = vtk.vtkFeatureEdges()
edges.SetInputConnection(id_filter.GetOutputPort())
edges.BoundaryEdgesOn()
edges.ManifoldEdgesOff()
edges.NonManifoldEdgesOff()
edges.FeatureEdgesOff()
edges.Update()
array = edges.GetOutput().GetPointData().GetArray(array_name)
n = edges.GetOutput().GetNumberOfPoints()
boundary_ids = []
for i in range(n):
boundary_ids.append(array.GetValue(i))
return boundary_ids
def point_neighborhood(self, p_id):
"""
Extract the topological neighbors for point pId. In two steps:
1) self.source.GetPointCells(pId, cell_ids)
2) self.source.GetCellPoints(c_id, point_ids) for all c_id in cell_ids
"""
cell_ids = vtk.vtkIdList()
self.source.GetPointCells(p_id, cell_ids)
neighbors = set()
for i in range(0, cell_ids.GetNumberOfIds()):
cell_id = cell_ids.GetId(i)
cell_point_ids = vtk.vtkIdList()
self.source.GetCellPoints(cell_id, cell_point_ids)
for j in range(0, cell_point_ids.GetNumberOfIds()):
neighbors.add(cell_point_ids.GetId(j))
return neighbors
def compute_distance(self, pt_id_a, pt_id_b):
pt_a = np.array(self.source.GetPoint(pt_id_a))
pt_b = np.array(self.source.GetPoint(pt_id_b))
return np.linalg.norm(pt_a - pt_b)
def update_curvatures(self, curvature_name):
"""
Add the adjusted curvatures into the self.source.
:return:
"""
if self.source.GetNumberOfPoints() != len(self.adjusted_curvatures[curvature_name]):
print(curvature_name, ':\nCannot add the adjusted curvatures to the source.\n'
' The number of points in source does not equal the\n'
' number of point ids in the adjusted curvature array.')
return
curvatures = numpy_support.numpy_to_vtk(num_array=self.adjusted_curvatures[curvature_name].ravel(), deep=True,
array_type=vtk.VTK_DOUBLE)
curvatures.SetName(curvature_name)
self.source.GetPointData().AddArray(curvatures)
self.source.GetPointData().SetActiveScalars(curvature_name)
# Remember to run Update after these set and on/off methods.
def set_gauss_curvature_bounds(self, lower=0.0, upper=0.0):
self.bounds['Gauss_Curvature'] = [lower, upper]
def gauss_bounds_on(self):
self.bounds_state['Gauss_Curvature'] = True
def gauss_bounds_off(self):
self.bounds_state['Gauss_Curvature'] = False
def set_mean_curvature_bounds(self, lower=0.0, upper=0.0):
self.bounds['Mean_Curvature'] = [lower, upper]
def mean_bounds_on(self):
self.bounds_state['Mean_Curvature'] = True
def mean_bounds_off(self):
self.bounds_state['Mean_Curvature'] = False
def set_epsilons(self, gauss_eps=1.0e-08, mean_eps=1.0e-08):
self.epsilons = {'Gauss_Curvature': gauss_eps, 'Mean_Curvature': mean_eps}