Newer
Older
SURFACE_TYPE = {'TORUS', 'PARAMETRIC_HILLS', 'PARAMETRIC_TORUS'}
def WritePNG(ren, fn, magnification=1):
"""
Save the image as a PNG
:param: ren - the renderer.
:param: fn - the file name.
:param: magnification - the magnification, usually 1.
renLgeIm = vtk.vtkRenderLargeImage()
imgWriter = vtk.vtkPNGWriter()
renLgeIm.SetInput(ren)
renLgeIm.SetMagnification(magnification)
imgWriter.SetInputConnection(renLgeIm.GetOutputPort())
imgWriter.SetFileName(fn)
imgWriter.Write()
def MakeBands(dR, numberOfBands, nearestInteger):
Divide a range into bands
:param: dR - [min, max] the range that is to be covered by the bands.
:param: numberOfBands - the number of bands, a positive integer.
:param: nearestInteger - if True then [floor(min), ceil(max)] is used.
:return: A List consisting of [min, midpoint, max] for each band.
bands = list()
if (dR[1] < dR[0]) or (numberOfBands <= 0):
return bands
x = list(dR)
if nearestInteger:
x[0] = math.floor(x[0])
x[1] = math.ceil(x[1])
dx = (x[1] - x[0]) / float(numberOfBands)
b = [x[0], x[0] + dx / 2.0, x[0] + dx]
i = 0
while i < numberOfBands:
bands.append(b)
b = [b[0] + dx, b[1] + dx, b[2] + dx]
i += 1
return bands
Divide a range into custom bands.
You need to specify each band as a list [r1, r2] where r1 < r2 and
append these to a list (called x in the implementation).
The list should ultimately look
like this: x = [[r1, r2], [r2, r3], [r3, r4]...]
:param: dR - [min, max] the range that is to be covered by the bands.
:param: numberOfBands - the number of bands, a positive integer.
:return: A List consisting of [min, midpoint, max] for each band.
bands = list()
if (dR[1] < dR[0]) or (numberOfBands <= 0):
return bands
x = list()
x.append([-0.7, -0.05])
x.append([-0.05, 0])
x.append([0, 0.13])
x.append([0.13, 1.07])
x.append([1.07, 35.4])
x.append([35.4, 37.1])
# Set the minimum to match the range minimum.
x[0][0] = dR[0]
if len(x) >= numberOfBands:
x = x[:numberOfBands]
# Adjust the last band.
t = (x[len(x) - 1])
if t[0] > dR[1]:
t[0] = dR[1]
t[1] = dR[1]
x[len(x) - 1] = t
for e in x:
bands.append([e[0], e[0] + (e[1] - e[0]) / 2, e[1]])
Count the number of scalars in each band.
:param: bands - the bands.
:param: src - the vtkPolyData source.
:return: The frequencies of the scalars in each band.
freq = dict()
for i in range(len(bands)):
tuples = src.GetPointData().GetScalars().GetNumberOfTuples()
for i in range(tuples):
x = src.GetPointData().GetScalars().GetTuple1(i)
for j in range(len(bands)):
if x <= bands[j][2]:
freq[j] = freq[j] + 1
break
return freq
Generate elevations over the surface.
:param: src - the vtkPolyData source.
:return: - vtkPolyData source with elevations.
"""
bounds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
src.GetBounds(bounds)
elevFilter = vtk.vtkElevationFilter()
elevFilter.SetInputData(src)
elevFilter.SetLowPoint(0, bounds[2], 0)
elevFilter.SetHighPoint(0, bounds[3], 0)
elevFilter.SetScalarRange(bounds[2], bounds[3])
elevFilter.Update()
return elevFilter.GetPolyDataOutput()
Make a torus as the source.
:return: vtkPolyData with normal and scalar data.
"""
source = vtk.vtkSuperquadricSource()
source.SetCenter(0.0, 0.0, 0.0)
source.SetScale(1.0, 1.0, 1.0)
source.SetPhiResolution(64)
source.SetThetaResolution(64)
source.SetThetaRoundness(1)
source.SetThickness(0.5)
source.SetSize(10)
source.SetToroidal(1)
# The quadric is made of strips, so pass it through a triangle filter as
# the curvature filter only operates on polys
tri = vtk.vtkTriangleFilter()
tri.SetInputConnection(source.GetOutputPort())
# The quadric has nasty discontinuities from the way the edges are generated
# so let's pass it though a CleanPolyDataFilter and merge any points which
# are coincident, or very close
cleaner = vtk.vtkCleanPolyData()
cleaner.SetInputConnection(tri.GetOutputPort())
cleaner.SetTolerance(0.005)
cleaner.Update()
return CalculateCurvatures(MakeElevations(cleaner.GetOutput()))
Make a parametric torus as the source.
:return: vtkPolyData with normal and scalar data.
fn = vtk.vtkParametricTorus()
fn.SetRingRadius(5)
fn.SetCrossSectionRadius(2)
source = vtk.vtkParametricFunctionSource()
source.SetParametricFunction(fn)
source.SetUResolution(50)
source.SetVResolution(50)
source.SetScalarModeToZ()
source.Update()
# Name the arrays (not needed in VTK 6.2+ for vtkParametricFunctionSource)
source.GetOutput().GetPointData().GetNormals().SetName('Normals')
# We have calculated the elevation, just rename the scalars.
source.GetOutput().GetPointData().GetScalars().SetName('Elevation')
return CalculateCurvatures(source.GetOutput())
Make a parametric hills surface as the source.
:return: vtkPolyData with normal and scalar data.
fn = vtk.vtkParametricRandomHills()
fn.AllowRandomGenerationOn()
fn.SetRandomSeed(1)
fn.SetNumberOfHills(30)
# Make the normals face out of the surface.
# Not needed with VTK 8.0 or later.
# if fn.GetClassName() == 'vtkParametricRandomHills':
# fn.ClockwiseOrderingOff()
source = vtk.vtkParametricFunctionSource()
source.SetParametricFunction(fn)
source.SetUResolution(50)
source.SetVResolution(50)
source.SetScalarModeToZ()
source.Update()
# Name the arrays (not needed in VTK 6.2+ for vtkParametricFunctionSource)
source.GetOutput().GetPointData().GetNormals().SetName('Normals')
# We have calculated the elevation, just rename the scalars.
source.GetOutput().GetPointData().GetScalars().SetName('Elevation')
return CalculateCurvatures(source.GetOutput())
Clip a vtkPolyData source.
A cube is made whose size corresponds the the bounds of the source.
Then each side is shrunk by the appropriate dx, dy or dz. After
this operation the source is clipped by the cube.
:param: src - the vtkPolyData source
:param: dx - the amount to clip in the x-direction
:param: dy - the amount to clip in the y-direction
:param: dz - the amount to clip in the z-direction
:return: vtkPolyData.
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
src.GetBounds(bounds)
plane1 = vtk.vtkPlane()
plane1.SetOrigin(bounds[0] + dx, 0, 0)
plane1.SetNormal(1, 0, 0)
plane2 = vtk.vtkPlane()
plane2.SetOrigin(bounds[1] - dx, 0, 0)
plane2.SetNormal(-1, 0, 0)
plane3 = vtk.vtkPlane()
plane3.SetOrigin(0, bounds[2] + dy, 0)
plane3.SetNormal(0, 1, 0)
plane4 = vtk.vtkPlane()
plane4.SetOrigin(0, bounds[3] - dy, 0)
plane4.SetNormal(0, -1, 0)
plane5 = vtk.vtkPlane()
plane5.SetOrigin(0, 0, bounds[4] + dz)
plane5.SetNormal(0, 0, 1)
plane6 = vtk.vtkPlane()
plane6.SetOrigin(0, 0, bounds[5] - dz)
plane6.SetNormal(0, 0, -1)
clipFunction = vtk.vtkImplicitBoolean()
clipFunction.SetOperationTypeToUnion()
clipFunction.AddFunction(plane1)
clipFunction.AddFunction(plane2)
clipFunction.AddFunction(plane3)
clipFunction.AddFunction(plane4)
clipFunction.AddFunction(plane5)
clipFunction.AddFunction(plane6)
# Clip it.
clipper.SetClipFunction(clipFunction)
clipper.SetInputData(src)
clipper.GenerateClipScalarsOff()
clipper.GenerateClippedOutputOff()
clipper.Update()
return clipper.GetOutput()
The source must be triangulated.
:param: src - the source.
:return: vtkPolyData with normal and scalar data representing curvatures.
curvature = vtk.vtkCurvatures()
curvature.SetCurvatureTypeToGaussian()
curvature.SetInputData(src)
curvature.Update()
return curvature.GetOutput()
Make a parametric surface as the source.
:return: vtkPolyData with normal and scalar data.
fn = vtk.vtkParametricEnneper()
source = vtk.vtkParametricFunctionSource()
source.SetParametricFunction(fn)
source.SetUResolution(50)
source.SetVResolution(50)
source.SetScalarModeToZ()
source.Update()
# Name the arrays (not needed in VTK 6.2+ for vtkParametricFunctionSource)
source.GetOutput().GetPointData().GetNormals().SetName('Normals')
# We have calculated the elevation, just rename the scalars.
source.GetOutput().GetPointData().GetScalars().SetName('Elevation')
return CalculateCurvatures(source.GetOutput())
Make a parametric surface as the source.
:return: vtkPolyData with normal and scalar data.
fn = vtk.vtkParametricBoy()
source = vtk.vtkParametricFunctionSource()
source.SetParametricFunction(fn)
source.SetUResolution(50)
source.SetVResolution(50)
source.SetScalarModeToZ()
source.Update()
# Name the arrays (not needed in VTK 6.2+ for vtkParametricFunctionSource)
source.GetOutput().GetPointData().GetNormals().SetName('Normals')
# We have calculated the elevation, just rename the scalars.
source.GetOutput().GetPointData().GetScalars().SetName('Elevation')
return CalculateCurvatures(source.GetOutput())
Make a lookup table using vtkColorSeries.
:return: An indexed lookup table.
# Make the lookup table.
colorSeries = vtk.vtkColorSeries()
# Select a color scheme.
# colorSeriesEnum = colorSeries.BREWER_DIVERGING_BROWN_BLUE_GREEN_9
# colorSeriesEnum = colorSeries.BREWER_DIVERGING_SPECTRAL_10
# colorSeriesEnum = colorSeries.BREWER_DIVERGING_SPECTRAL_3
# colorSeriesEnum = colorSeries.BREWER_DIVERGING_PURPLE_ORANGE_9
# colorSeriesEnum = colorSeries.BREWER_SEQUENTIAL_BLUE_PURPLE_9
# colorSeriesEnum = colorSeries.BREWER_SEQUENTIAL_BLUE_GREEN_9
colorSeriesEnum = colorSeries.BREWER_QUALITATIVE_SET3
colorSeries.SetColorScheme(colorSeriesEnum)
lut = vtk.vtkLookupTable()
colorSeries.BuildLookupTable(lut)
Create a lookup table with the colors reversed.
:param: lut - An indexed lookup table.
:return: The reversed indexed lookup table.
lutr = vtk.vtkLookupTable()
lutr.DeepCopy(lut)
t = lut.GetNumberOfTableValues() - 1
revRange = reversed(list(range(t + 1)))
for i in revRange:
rgba = [0.0] * 3
for i in revRange:
lutr.SetAnnotation(t - i, lut.GetAnnotation(i))
return lutr
Glyph the normals on the surface.
You may need to adjust the parameters for maskPts, arrow and glyph for a
nice appearance.
:param: src - the surface to glyph.
:param: reverseNormals - if True the normals on the surface are reversed.
:return: The glyph object.
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Sometimes the contouring algorithm can create a volume whose gradient
# vector and ordering of polygon (using the right hand rule) are
# inconsistent. vtkReverseSense cures this problem.
reverse = vtk.vtkReverseSense()
# Choose a random subset of points.
maskPts = vtk.vtkMaskPoints()
maskPts.SetOnRatio(5)
maskPts.RandomModeOn()
if reverseNormals:
reverse.SetInputData(src)
reverse.ReverseCellsOn()
reverse.ReverseNormalsOn()
maskPts.SetInputConnection(reverse.GetOutputPort())
else:
maskPts.SetInputData(src)
# Source for the glyph filter
arrow = vtk.vtkArrowSource()
arrow.SetTipResolution(16)
arrow.SetTipLength(0.3)
arrow.SetTipRadius(0.1)
glyph = vtk.vtkGlyph3D()
glyph.SetSourceConnection(arrow.GetOutputPort())
glyph.SetInputConnection(maskPts.GetOutputPort())
glyph.SetVectorModeToUseNormal()
glyph.SetScaleFactor(1)
glyph.SetColorModeToColorByVector()
glyph.SetScaleModeToScaleByVector()
glyph.OrientOn()
glyph.Update()
return glyph
Make and display the surface.
:param: st - the surface to display.
:return The vtkRenderWindowInteractor.
iren = vtk.vtkRenderWindowInteractor()
return iren
colors = vtk.vtkNamedColors()
# Set the background color.
colors.SetColor('BkgColor', [179, 204, 255, 255])
# ------------------------------------------------------------
# Create the surface, lookup tables, contour filter etc.
# ------------------------------------------------------------
src = vtk.vtkPolyData()
elif surface == 'PARAMETRIC_TORUS':
elif surface == 'PARAMETRIC_HILLS':
src = Clipper(MakeParametricHills(), 0.5, 0.5, 0.0)
# Here we are assuming that the active scalars are the curvatures.
curvatureName = src.GetPointData().GetScalars().GetName()
# Use this range to color the glyphs for the normals by elevation.
src.GetPointData().SetActiveScalars('Elevation')
scalarRangeElevation = src.GetScalarRange()
src.GetPointData().SetActiveScalars(curvatureName)
scalarRangeCurvatures = src.GetScalarRange()
scalarRange = scalarRangeCurvatures
lut = MakeLUT()
numberOfBands = lut.GetNumberOfTableValues()
bands = MakeBands(scalarRange, numberOfBands, False)
if surface == 'PARAMETRIC_HILLS':
# Comment this out if you want to see how allocating
# equally spaced bands works.
bands = MakeCustomBands(scalarRange, numberOfBands)
# Adjust the number of table values
numberOfBands = len(bands)
lut.SetNumberOfTableValues(numberOfBands)
lut.SetTableRange(scalarRange)
# We will use the midpoint of the band as the label.
labels = []
for i in range(numberOfBands):
labels.append('{:4.2f}'.format(bands[i][1]))
# Annotate
values = vtk.vtkVariantArray()
for i in range(len(labels)):
values.InsertNextValue(vtk.vtkVariant(labels[i]))
for i in range(values.GetNumberOfTuples()):
lut.SetAnnotation(i, values.GetValue(i).ToString())
# Create a lookup table with the colors reversed.
lutr = ReverseLUT(lut)
# Create the contour bands.
bcf = vtk.vtkBandedPolyDataContourFilter()
bcf.SetInputData(src)
# Use either the minimum or maximum value for each band.
for i in range(0, numberOfBands):
bcf.SetValue(i, bands[i][2])
# We will use an indexed lookup table.
bcf.SetScalarModeToIndex()
bcf.GenerateContourEdgesOn()
# Generate the glyphs on the original surface.
# ------------------------------------------------------------
# Create the mappers and actors
# ------------------------------------------------------------
srcMapper = vtk.vtkPolyDataMapper()
srcMapper.SetInputConnection(bcf.GetOutputPort())
srcMapper.SetScalarRange(scalarRange)
srcMapper.SetLookupTable(lut)
srcMapper.SetScalarModeToUseCellData()
srcActor = vtk.vtkActor()
srcActor.SetMapper(srcMapper)
srcActor.RotateX(-45)
srcActor.RotateZ(45)
# Create contour edges
edgeMapper = vtk.vtkPolyDataMapper()
edgeMapper.SetInputData(bcf.GetContourEdgesOutput())
edgeMapper.SetResolveCoincidentTopologyToPolygonOffset()
edgeActor = vtk.vtkActor()
edgeActor.SetMapper(edgeMapper)
edgeActor.GetProperty().SetColor(colors.GetColor3d('Black'))
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
edgeActor.RotateX(-45)
edgeActor.RotateZ(45)
glyphMapper = vtk.vtkPolyDataMapper()
glyphMapper.SetInputConnection(glyph.GetOutputPort())
glyphMapper.SetScalarModeToUsePointFieldData()
glyphMapper.SetColorModeToMapScalars()
glyphMapper.ScalarVisibilityOn()
glyphMapper.SelectColorArray('Elevation')
# Colour by scalars.
glyphMapper.SetScalarRange(scalarRangeElevation)
glyphActor = vtk.vtkActor()
glyphActor.SetMapper(glyphMapper)
glyphActor.RotateX(-45)
glyphActor.RotateZ(45)
# Add a scalar bar.
scalarBar = vtk.vtkScalarBarActor()
# This LUT puts the lowest value at the top of the scalar bar.
# scalarBar->SetLookupTable(lut);
# Use this LUT if you want the highest value at the top.
scalarBar.SetLookupTable(lutr)
scalarBar.SetTitle('Gaussian\nCurvature')
# ------------------------------------------------------------
# Create the RenderWindow, Renderer and Interactor
# ------------------------------------------------------------
ren = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
iren = vtk.vtkRenderWindowInteractor()
renWin.AddRenderer(ren)
iren.SetRenderWindow(renWin)
# add actors
ren.AddViewProp(srcActor)
ren.AddViewProp(edgeActor)
ren.AddViewProp(glyphActor)
ren.AddActor2D(scalarBar)
ren.SetBackground(colors.GetColor3d('BkgColor'))
renWin.SetWindowName('CurvatureBandsWithGlyphs')
renWin.Render()
ren.GetActiveCamera().Zoom(1.5)
return iren
# interactor = vtk.vtkRenderWindowInteractor()
# interactor = DisplaySurface('TORUS')
# interactor = DisplaySurface('PARAMETRIC_TORUS')
interactor = DisplaySurface('PARAMETRIC_HILLS')
interactor.Render()
interactor.Start()
# WritePNG(interactor.GetRenderWindow().GetRenderers().GetFirstRenderer(),
# 'CurvatureBandsWithGlyphs.png')