Newer
Older
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def main():
# ------------------------------------------------------------
# Create the surface, lookup tables, contour filter etc.
# ------------------------------------------------------------
# desired_surface = 'ParametricTorus'
# desired_surface = 'Plane'
desired_surface = 'RandomHills'
# desired_surface = 'Sphere'
# desired_surface = 'Torus'
surface = desired_surface.lower()
available_surfaces = ['parametrictorus', 'plane', 'randomhills', 'sphere', 'torus']
if surface not in available_surfaces:
print('No surface specified.')
return
if surface == 'parametrictorus':
src = make_parametric_torus()
elif surface == 'plane':
src = make_elevations(make_plane())
elif surface == 'randomhills':
src = make_parametric_hills()
elif surface == 'sphere':
src = make_elevations(make_sphere())
elif surface == 'torus':
src = make_elevations(make_torus())
else:
print('No surface specified.')
return
print(desired_surface)
src.GetPointData().SetActiveScalars('Elevation')
scalar_range = src.GetPointData().GetScalars('Elevation').GetRange()
lut = make_categorical_lut()
lut1 = make_ordinal_lut()
lut.SetTableRange(scalar_range)
lut1.SetTableRange(scalar_range)
number_of_bands = lut.GetNumberOfTableValues()
lut.SetNumberOfTableValues(number_of_bands)
bands = make_bands(scalar_range, number_of_bands, False)
if surface == 'randomhills':
# These are my custom bands.
# Generated by first running:
# bands = make_bands(scalar_range, number_of_bands, False)
# then:
# freq = frequencies(bands, src)
# print_bands_frequencies(bands, freq)
# Finally using the output to create this table:
my_bands = [
[0, 1.0], [1.0, 2.0], [2.0, 3.0],
[3.0, 4.0], [4.0, 5.0], [5.0, 6.0],
[6.0, 7.0], [7.0, 8.0]]
# Comment this out if you want to see how allocating
# equally spaced bands works.
bands = make_custom_bands(scalar_range, number_of_bands, my_bands)
# bands = make_bands(scalar_range, number_of_bands, False)
# Adjust the number of table values
number_of_bands = len(bands)
lut.SetNumberOfTableValues(number_of_bands)
lut1.SetNumberOfTableValues(number_of_bands)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Let's do a frequency table.
# The number of scalars in each band.
freq = frequencies(bands, src)
min_key = min(freq.keys())
max_key = max(freq.keys())
first, last = adjust_frequency_ranges(freq)
for idx in range(min_key, first):
freq.pop(idx)
bands.pop(idx)
for idx in range(last + 1, max_key + 1):
freq.popitem()
bands.popitem()
old_keys = freq.keys()
adj_freq = OrderedDict()
adj_bands = OrderedDict()
for idx, k in enumerate(old_keys):
adj_freq[idx] = freq[k]
adj_bands[idx] = bands[k]
# print_bands_frequencies(bands, freq)
print_bands_frequencies(adj_bands, adj_freq)
min_key = min(adj_freq.keys())
max_key = max(adj_freq.keys())
scalar_range_curvatures = (adj_bands[min_key][0], adj_bands[max_key][2])
lut.SetTableRange(scalar_range_curvatures)
lut.SetNumberOfTableValues(len(adj_bands))
lut1.SetNumberOfTableValues(len(adj_bands))
# We will use the midpoint of the band as the label.
labels = []
for i in range(len(adj_bands)):
labels.append('{:4.2f}'.format(adj_bands[i][1]))
# Annotate
values = vtk.vtkVariantArray()
for i in range(len(labels)):
values.InsertNextValue(vtk.vtkVariant(labels[i]))
for i in range(values.GetNumberOfTuples()):
lut.SetAnnotation(i, values.GetValue(i).ToString())
# Create a lookup table with the colors reversed.
lutr = reverse_lut(lut)
# Create the contour bands.
bcf = vtk.vtkBandedPolyDataContourFilter()
bcf.SetInputData(src)
# Use either the minimum or maximum value for each band.
for i in range(len(adj_bands)):
bcf.SetValue(i, adj_bands[i][2])
# We will use an indexed lookup table.
bcf.SetScalarModeToIndex()
bcf.GenerateContourEdgesOn()
# Generate the glyphs on the original surface.
glyph = make_glyphs(src, False)
# ------------------------------------------------------------
# Create the mappers and actors
# ------------------------------------------------------------
colors = vtk.vtkNamedColors()
# Set the background color.
colors.SetColor('BkgColor', [179, 204, 255, 255])
colors.SetColor("ParaViewBkg", [82, 87, 110, 255])
src_mapper = vtk.vtkPolyDataMapper()
src_mapper.SetInputConnection(bcf.GetOutputPort())
src_mapper.SetScalarRange(scalar_range)
src_mapper.SetLookupTable(lut)
src_mapper.SetScalarModeToUseCellData()
src_actor = vtk.vtkActor()
src_actor.SetMapper(src_mapper)
# Create contour edges
edge_mapper = vtk.vtkPolyDataMapper()
edge_mapper.SetInputData(bcf.GetContourEdgesOutput())
edge_mapper.SetResolveCoincidentTopologyToPolygonOffset()
edge_actor = vtk.vtkActor()
edge_actor.SetMapper(edge_mapper)
edge_actor.GetProperty().SetColor(colors.GetColor3d('Black'))
glyph_mapper = vtk.vtkPolyDataMapper()
glyph_mapper.SetInputConnection(glyph.GetOutputPort())
glyph_mapper.SetScalarModeToUsePointFieldData()
glyph_mapper.SetColorModeToMapScalars()
glyph_mapper.ScalarVisibilityOn()
glyph_mapper.SelectColorArray('Elevation')
# Colour by scalars.
glyph_mapper.SetLookupTable(lut1)
glyph_mapper.SetScalarRange(scalar_range)
glyph_actor = vtk.vtkActor()
glyph_actor.SetMapper(glyph_mapper)
window_width = 800
window_height = 800
# Add a scalar bar.
scalar_bar = vtk.vtkScalarBarActor()
# This LUT puts the lowest value at the top of the scalar bar.
# scalar_bar->SetLookupTable(lut);
# Use this LUT if you want the highest value at the top.
scalar_bar.SetLookupTable(lutr)
scalar_bar.SetTitle('Elevation')
scalar_bar.GetTitleTextProperty().SetColor(
colors.GetColor3d('AliceBlue'))
scalar_bar.GetLabelTextProperty().SetColor(
colors.GetColor3d('AliceBlue'))
scalar_bar.GetAnnotationTextProperty().SetColor(
colors.GetColor3d('AliceBlue'))
scalar_bar.UnconstrainedFontSizeOn()
scalar_bar.SetMaximumWidthInPixels(window_width // 8)
scalar_bar.SetMaximumHeightInPixels(window_height // 3)
scalar_bar.SetPosition(0.85, 0.05)
# ------------------------------------------------------------
# Create the RenderWindow, Renderer and Interactor
# ------------------------------------------------------------
ren = vtk.vtkRenderer()
ren_win = vtk.vtkRenderWindow()
iren = vtk.vtkRenderWindowInteractor()
style = vtk.vtkInteractorStyleTrackballCamera()
iren.SetInteractorStyle(style)
ren_win.AddRenderer(ren)
# Important: The interactor must be set prior to enabling the widget.
iren.SetRenderWindow(ren_win)
cam_orient_manipulator = vtk.vtkCameraOrientationWidget()
cam_orient_manipulator.SetParentRenderer(ren)
# Enable the widget.
cam_orient_manipulator.On()
# add actors
ren.AddViewProp(src_actor)
ren.AddViewProp(edge_actor)
ren.AddViewProp(glyph_actor)
ren.AddActor2D(scalar_bar)
ren.SetBackground(colors.GetColor3d('ParaViewBkg'))
ren_win.SetSize(window_width, window_height)
ren_win.SetWindowName('ElevationBandsWithGlyphs')
if desired_surface == "RandomHills":
camera = ren.GetActiveCamera()
camera.SetPosition(10.9299, 59.1505, 24.9823)
camera.SetFocalPoint(2.21692, 7.97545, 7.75135)
camera.SetViewUp(-0.230136, 0.345504, -0.909761)
camera.SetDistance(54.6966)
camera.SetClippingRange(36.3006, 77.9852)
ren_win.Render()
iren.Start()
def make_bands(d_r, number_of_bands, nearest_integer):
:param: d_r - [min, max] the range that is to be covered by the bands.
:param: number_of_bands - the number of bands, a positive integer.
:param: nearest_integer - if True then [floor(min), ceil(max)] is used.
:return: A dictionary consisting of the band number and [min, midpoint, max] for each band.
bands = OrderedDict()
if (d_r[1] < d_r[0]) or (number_of_bands <= 0):
x = list(d_r)
if nearest_integer:
x[0] = math.floor(x[0])
x[1] = math.ceil(x[1])
dx = (x[1] - x[0]) / float(number_of_bands)
b = [x[0], x[0] + dx / 2.0, x[0] + dx]
i = 0
while i < number_of_bands:
bands[i] = b
b = [b[0] + dx, b[1] + dx, b[2] + dx]
i += 1
return bands
def make_custom_bands(d_r, number_of_bands, my_bands):
Divide a range into custom bands.
You need to specify each band as an list [r1, r2] where r1 < r2 and
append these to a list.
The list should ultimately look
like this: [[r1, r2], [r2, r3], [r3, r4]...]
:param: d_r - [min, max] the range that is to be covered by the bands.
:param: number_of_bands - the number of bands, a positive integer.
:return: A dixtionary consisting of band number and [min, midpoint, max] for each band.
bands = OrderedDict()
if (d_r[1] < d_r[0]) or (number_of_bands <= 0):
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
x = my_bands
# Determine the index of the range minimum and range maximum.
idx_min = 0
for idx in range(0, len(my_bands)):
if my_bands[idx][1] > d_r[0] >= my_bands[idx][0]:
idx_min = idx
break
idx_max = len(my_bands) - 1
for idx in range(len(my_bands) - 1, -1, -1):
if my_bands[idx][1] > d_r[1] >= my_bands[idx][0]:
idx_max = idx
break
# Set the minimum to match the range minimum.
x[idx_min][0] = d_r[0]
x[idx_max][1] = d_r[1]
x = x[idx_min: idx_max + 1]
for idx, e in enumerate(x):
bands[idx] = [e[0], e[0] + (e[1] - e[0]) / 2, e[1]]
return bands
def frequencies(bands, src):
"""
Count the number of scalars in each band.
:param: bands - the bands.
:param: src - the vtkPolyData source.
:return: The frequencies of the scalars in each band.
"""
freq = OrderedDict()
for i in range(len(bands)):
freq[i] = 0
tuples = src.GetPointData().GetScalars().GetNumberOfTuples()
for i in range(tuples):
x = src.GetPointData().GetScalars().GetTuple1(i)
for j in range(len(bands)):
if x <= bands[j][2]:
freq[j] = freq[j] + 1
break
return freq
def adjust_frequency_ranges(freq):
"""
Get the indices of the first and last non-zero elements.
:param freq: The frequency dictionary.
:return: The indices of the first and last non-zero elements.
"""
first = 0
for k, v in freq.items():
if v != 0:
first = k
break
rev_keys = list(freq.keys())[::-1]
last = rev_keys[0]
for idx in list(freq.keys())[::-1]:
if freq[idx] != 0:
last = idx
break
return first, last
def make_elevations(src):
Generate elevations over the surface.
:param: src - the vtkPolyData source.
:return: - vtkPolyData source with elevations.
"""
bounds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
if abs(bounds[2]) < 1.0e-8 and abs(bounds[3]) < 1.0e-8:
bounds[3] = bounds[2] + 1
elev_filter = vtk.vtkElevationFilter()
elev_filter.SetInputData(src)
elev_filter.SetLowPoint(0, bounds[2], 0)
elev_filter.SetHighPoint(0, bounds[3], 0)
elev_filter.SetScalarRange(bounds[2], bounds[3])
elev_filter.Update()
return elev_filter.GetPolyDataOutput()
def make_parametric_hills():
"""
Make a parametric hills surface as the source.
:return: vtkPolyData with normal and scalar data.
"""
fn = vtk.vtkParametricRandomHills()
fn.AllowRandomGenerationOn()
fn.SetRandomSeed(1)
fn.SetNumberOfHills(30)
# Make the normals face out of the surface.
# Not needed with VTK 8.0 or later.
# if fn.GetClassName() == 'vtkParametricRandomHills':
# fn.ClockwiseOrderingOff()
source = vtk.vtkParametricFunctionSource()
source.SetParametricFunction(fn)
source.SetUResolution(50)
source.SetVResolution(50)
source.SetScalarModeToZ()
source.Update()
# Name the arrays (not needed in VTK 6.2+ for vtkParametricFunctionSource).
# source.GetOutput().GetPointData().GetNormals().SetName('Normals')
# source.GetOutput().GetPointData().GetScalars().SetName('Scalars')
# Rename the scalars to 'Elevation' since we are using the Z-scalars as elevations.
source.GetOutput().GetPointData().GetScalars().SetName('Elevation')
transform = vtk.vtkTransform()
transform.Translate(0.0, 5.0, 15.0)
transform.RotateX(-90.0)
transform_filter = vtk.vtkTransformPolyDataFilter()
transform_filter.SetInputConnection(source.GetOutputPort())
transform_filter.SetTransform(transform)
transform_filter.Update()
return transform_filter.GetOutput()
def make_parametric_torus():
"""
Make a parametric torus as the source.
:return: vtkPolyData with normal and scalar data.
"""
fn = vtk.vtkParametricTorus()
fn.SetRingRadius(5)
fn.SetCrossSectionRadius(2)
source = vtk.vtkParametricFunctionSource()
source.SetParametricFunction(fn)
source.SetUResolution(50)
source.SetVResolution(50)
source.SetScalarModeToZ()
source.Update()
# Name the arrays (not needed in VTK 6.2+ for vtkParametricFunctionSource).
# source.GetOutput().GetPointData().GetNormals().SetName('Normals')
# source.GetOutput().GetPointData().GetScalars().SetName('Scalars')
# Rename the scalars to 'Elevation' since we are using the Z-scalars as elevations.
source.GetOutput().GetPointData().GetScalars().SetName('Elevation')
transform = vtk.vtkTransform()
transform.RotateX(-90.0)
transform_filter = vtk.vtkTransformPolyDataFilter()
transform_filter.SetInputConnection(source.GetOutputPort())
transform_filter.SetTransform(transform)
transform_filter.Update()
return transform_filter.GetOutput()
def make_plane():
Make a plane as the source.
:return: vtkPolyData with normal and scalar data.
source = vtk.vtkPlaneSource()
source.SetOrigin(-10.0, -10.0, 0.0)
source.SetPoint2(-10.0, 10.0, 0.0)
source.SetPoint1(10.0, -10.0, 0.0)
source.SetXResolution(20)
source.SetYResolution(20)
source.Update()
transform = vtk.vtkTransform()
transform.Translate(0.0, 0.0, 0.0)
transform.RotateX(-90.0)
transform_filter = vtk.vtkTransformPolyDataFilter()
transform_filter.SetInputConnection(source.GetOutputPort())
transform_filter.SetTransform(transform)
transform_filter.Update()
# We have a m x n array of quadrilaterals arranged as a regular tiling in a
# plane. So pass it through a triangle filter since the curvature filter only
# operates on polys.
tri = vtk.vtkTriangleFilter()
tri.SetInputConnection(transform_filter.GetOutputPort())
# Pass it though a CleanPolyDataFilter and merge any points which
# are coincident, or very close
cleaner = vtk.vtkCleanPolyData()
cleaner.SetInputConnection(tri.GetOutputPort())
cleaner.SetTolerance(0.005)
cleaner.Update()
return cleaner.GetOutput()
def make_sphere():
source = vtk.vtkSphereSource()
source.SetCenter(0.0, 0.0, 0.0)
source.SetRadius(10.0)
source.SetThetaResolution(32)
source.SetPhiResolution(32)
source.Update()
:return: vtkPolyData with normal and scalar data.
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
source = vtk.vtkSuperquadricSource()
source.SetCenter(0.0, 0.0, 0.0)
source.SetScale(1.0, 1.0, 1.0)
source.SetPhiResolution(64)
source.SetThetaResolution(64)
source.SetThetaRoundness(1)
source.SetThickness(0.5)
source.SetSize(10)
source.SetToroidal(1)
# The quadric is made of strips, so pass it through a triangle filter as
# the curvature filter only operates on polys
tri = vtk.vtkTriangleFilter()
tri.SetInputConnection(source.GetOutputPort())
# The quadric has nasty discontinuities from the way the edges are generated
# so let's pass it though a CleanPolyDataFilter and merge any points which
# are coincident, or very close
cleaner = vtk.vtkCleanPolyData()
cleaner.SetInputConnection(tri.GetOutputPort())
cleaner.SetTolerance(0.005)
cleaner.Update()
return cleaner.GetOutput()
def clipper(src, dx, dy, dz):
"""
Clip a vtkPolyData source.
A cube is made whose size corresponds the the bounds of the source.
Then each side is shrunk by the appropriate dx, dy or dz. After
this operation the source is clipped by the cube.
:param: src - the vtkPolyData source
:param: dx - the amount to clip in the x-direction
:param: dy - the amount to clip in the y-direction
:param: dz - the amount to clip in the z-direction
:return: vtkPolyData.
"""
bounds = [0, 0, 0, 0, 0, 0]
src.GetBounds(bounds)
plane1 = vtk.vtkPlane()
plane1.SetOrigin(bounds[0] + dx, 0, 0)
plane1.SetNormal(1, 0, 0)
plane2 = vtk.vtkPlane()
plane2.SetOrigin(bounds[1] - dx, 0, 0)
plane2.SetNormal(-1, 0, 0)
plane3 = vtk.vtkPlane()
plane3.SetOrigin(0, bounds[2] + dy, 0)
plane3.SetNormal(0, 1, 0)
plane4 = vtk.vtkPlane()
plane4.SetOrigin(0, bounds[3] - dy, 0)
plane4.SetNormal(0, -1, 0)
plane5 = vtk.vtkPlane()
plane5.SetOrigin(0, 0, bounds[4] + dz)
plane5.SetNormal(0, 0, 1)
plane6 = vtk.vtkPlane()
plane6.SetOrigin(0, 0, bounds[5] - dz)
plane6.SetNormal(0, 0, -1)
clip_function = vtk.vtkImplicitBoolean()
clip_function.SetOperationTypeToUnion()
clip_function.AddFunction(plane1)
clip_function.AddFunction(plane2)
clip_function.AddFunction(plane3)
clip_function.AddFunction(plane4)
clip_function.AddFunction(plane5)
clip_function.AddFunction(plane6)
# Clip it.
pd_clipper = vtk.vtkClipPolyData()
pd_clipper.SetClipFunction(clip_function)
pd_clipper.SetInputData(src)
pd_clipper.GenerateClipScalarsOff()
pd_clipper.GenerateClippedOutputOff()
# pd_clipper.GenerateClippedOutputOn()
pd_clipper.Update()
return pd_clipper.GetOutput()
def calculate_curvatures(src):
"""
The source must be triangulated.
:param: src - the source.
:return: vtkPolyData with normal and scalar data representing curvatures.
"""
curvature = vtk.vtkCurvatures()
curvature.SetCurvatureTypeToGaussian()
curvature.SetInputData(src)
curvature.Update()
return curvature.GetOutput()
def get_color_series():
color_series = vtk.vtkColorSeries()
# Select a color scheme.
# color_series_enum = color_series.BREWER_DIVERGING_BROWN_BLUE_GREEN_9
# color_series_enum = color_series.BREWER_DIVERGING_SPECTRAL_10
# color_series_enum = color_series.BREWER_DIVERGING_SPECTRAL_3
# color_series_enum = color_series.BREWER_DIVERGING_PURPLE_ORANGE_9
# color_series_enum = color_series.BREWER_SEQUENTIAL_BLUE_PURPLE_9
# color_series_enum = color_series.BREWER_SEQUENTIAL_BLUE_GREEN_9
color_series_enum = color_series.BREWER_QUALITATIVE_SET3
# color_series_enum = color_series.CITRUS
color_series.SetColorScheme(color_series_enum)
return color_series
def make_categorical_lut():
:return: An indexed (categorical) lookup table.
# Make the lookup table.
lut = vtk.vtkLookupTable()
color_series.BuildLookupTable(lut, color_series.CATEGORICAL)
lut.SetNanColor(0, 0, 0, 1)
def make_ordinal_lut():
"""
Make a lookup table using vtkColorSeries.
:return: An ordinal (not indexed) lookup table.
"""
color_series = get_color_series()
# Make the lookup table.
lut = vtk.vtkLookupTable()
color_series.BuildLookupTable(lut, color_series.ORDINAL)
lut.SetNanColor(0, 0, 0, 1)
return lut
def reverse_lut(lut):
Create a lookup table with the colors reversed.
:param: lut - An indexed lookup table.
:return: The reversed indexed lookup table.
lutr = vtk.vtkLookupTable()
lutr.DeepCopy(lut)
t = lut.GetNumberOfTableValues() - 1
rev_range = reversed(list(range(t + 1)))
for i in rev_range:
rgba = [0.0] * 3
rev_range = reversed(list(range(t + 1)))
for i in rev_range:
lutr.SetAnnotation(t - i, lut.GetAnnotation(i))
return lutr
def make_glyphs(src, reverse_normals):
You may need to adjust the parameters for mask_pts, arrow and glyph for a
nice appearance.
:param: src - the surface to glyph.
:param: reverse_normals - if True the normals on the surface are reversed.
# Sometimes the contouring algorithm can create a volume whose gradient
# vector and ordering of polygon (using the right hand rule) are
# inconsistent. vtkReverseSense cures this problem.
reverse = vtk.vtkReverseSense()
# Choose a random subset of points.
mask_pts = vtk.vtkMaskPoints()
mask_pts.SetOnRatio(5)
mask_pts.RandomModeOn()
if reverse_normals:
reverse.SetInputData(src)
reverse.ReverseCellsOn()
reverse.ReverseNormalsOn()
mask_pts.SetInputConnection(reverse.GetOutputPort())
# Source for the glyph filter
arrow = vtk.vtkArrowSource()
arrow.SetTipResolution(16)
arrow.SetTipLength(0.3)
arrow.SetTipRadius(0.1)
glyph = vtk.vtkGlyph3D()
glyph.SetSourceConnection(arrow.GetOutputPort())
glyph.SetInputConnection(mask_pts.GetOutputPort())
glyph.SetColorModeToColorByVector()
glyph.SetScaleModeToScaleByVector()
glyph.OrientOn()
glyph.Update()
return glyph
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
def print_bands(bands):
s = f'Bands:\n'
for k, v in bands.items():
for j, q in enumerate(v):
if j == 0:
s += f'{k:4d} ['
if j == len(v) - 1:
s += f'{q:8.3f}]\n'
else:
s += f'{q:8.3f}, '
print(s)
def print_frequencies(freq):
s = ''
for i, p in freq.items():
if i == 0:
s += f'Frequencies: ['
if i == len(freq) - 1:
s += f'{i}: {p} ]'
else:
s += f'{i}: {p}, '
print(s)
def print_bands_frequencies(bands, freq):
if len(bands) != len(freq):
print('Bands and frequencies must be the same size.')
return
s = f'Bands & frequencies:\n'
for k, v in bands.items():
for j, q in enumerate(v):
if j == 0:
s += f'{k:4d} ['
if j == len(v) - 1:
s += f'{q:8.3f}]: {freq[k]:6d}\n'
else:
s += f'{q:8.3f}, '
print(s)