Commit dbeb1b63 by Andrew Maclean

### ENH: minor modifications and corrections to the documentation,

parent 54cdf795
 ... ... @@ -59,8 +59,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -75,8 +75,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -52,8 +52,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -65,8 +65,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -72,8 +72,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -52,8 +52,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -17,7 +17,7 @@ // vtkParametricFigure8Klein generates a figure-8 Klein bottle. A Klein bottle // is a closed surface with no interior and only one surface. It is // unrealisable in 3 dimensions without intersecting surfaces. It can be // realised in 4 dimensions by considering the map \f$F:R^2 \roghtarrow R^4 \f$ given by: // realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4 \f$ given by: // // - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2)) \f$ // ... ... @@ -65,8 +65,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -17,7 +17,10 @@ // vtkParametricKlein generates a "classical" representation of a Klein // bottle. A Klein bottle is a closed surface with no interior and only one // surface. It is unrealisable in 3 dimensions without intersecting // surfaces. // surfaces. It can be // realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4 \f$ given by: // // - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2)) \f$ // // The classical representation of the immersion in \f$R^3\f$ is returned by this function. // ... ... @@ -55,8 +58,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -56,8 +56,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -133,8 +133,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -56,8 +56,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -86,8 +86,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -103,8 +103,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -64,8 +64,8 @@ public: // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$. // Then the normal is \f$N = Du X Dv \f$. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment