Commit dbeb1b63 authored by Andrew Maclean's avatar Andrew Maclean

ENH: minor modifications and corrections to the documentation,

parent 54cdf795
......@@ -59,8 +59,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -75,8 +75,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -52,8 +52,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -65,8 +65,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -72,8 +72,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -52,8 +52,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -17,7 +17,7 @@
// vtkParametricFigure8Klein generates a figure-8 Klein bottle. A Klein bottle
// is a closed surface with no interior and only one surface. It is
// unrealisable in 3 dimensions without intersecting surfaces. It can be
// realised in 4 dimensions by considering the map \f$ F:R^2 \roghtarrow R^4 \f$ given by:
// realised in 4 dimensions by considering the map \f$ F:R^2 \rightarrow R^4 \f$ given by:
//
// - \f$ f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2)) \f$
//
......@@ -65,8 +65,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -17,7 +17,10 @@
// vtkParametricKlein generates a "classical" representation of a Klein
// bottle. A Klein bottle is a closed surface with no interior and only one
// surface. It is unrealisable in 3 dimensions without intersecting
// surfaces.
// surfaces. It can be
// realised in 4 dimensions by considering the map \f$ F:R^2 \rightarrow R^4 \f$ given by:
//
// - \f$ f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2)) \f$
//
// The classical representation of the immersion in \f$ R^3\f$ is returned by this function.
//
......@@ -55,8 +58,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -56,8 +56,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -133,8 +133,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -56,8 +56,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -86,8 +86,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -103,8 +103,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -64,8 +64,8 @@ public:
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$.
// Then the normal is \f$ N = Du X Dv \f$.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment