Commit 12e72671 by Andrew Maclean

### ENH: removed space after opening \f$and before closing \f$, Added virtual...

ENH:   removed space after opening \f$and before closing \f$, Added virtual to some functions declarations.
parent dbeb1b63
 ... ... @@ -57,11 +57,11 @@ public: // Description: // Boy's surface. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw,Pt,Duvw. ... ... @@ -76,7 +76,7 @@ public: // If the user does not need to calculate a scalar, then the // instantiated function should return zero. // double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricBoy(); ... ...
 ... ... @@ -73,11 +73,11 @@ public: // Description: // A conic spiral surface. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw,Pt,Duvw. ... ... @@ -91,7 +91,7 @@ public: // // If the user does not need to calculate a scalar, then the // instantiated function should return zero. double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricConicSpiral(); ... ...
 ... ... @@ -50,11 +50,11 @@ public: // Description: // A cross-cap. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw,Pt,Duvw. ... ... @@ -69,7 +69,7 @@ public: // If the user does not need to calculate a scalar, then the // instantiated function should return zero. // double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricCrossCap(); ... ...
 ... ... @@ -63,11 +63,11 @@ public: // Description: // Dini's surface. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw,Pt,Duvw. ... ... @@ -82,7 +82,7 @@ public: // If the user does not need to calculate a scalar, then the // instantiated function should return zero. // double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricDini(); ... ...
 ... ... @@ -70,11 +70,11 @@ public: // Description: // An ellipsoid. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw,Pt,Duvw. ... ... @@ -89,7 +89,7 @@ public: // If the user does not need to calculate a scalar, then the // instantiated function should return zero. // double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricEllipsoid(); ... ...
 ... ... @@ -50,11 +50,11 @@ public: // Description: // Enneper's surface. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw,Pt,Duvw. ... ... @@ -69,7 +69,7 @@ public: // If the user does not need to calculate a scalar, then the // instantiated function should return zero. // double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricEnneper(); ... ...
 ... ... @@ -17,11 +17,11 @@ // vtkParametricFigure8Klein generates a figure-8 Klein bottle. A Klein bottle // is a closed surface with no interior and only one surface. It is // unrealisable in 3 dimensions without intersecting surfaces. It can be // realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4 \f$ given by: // realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4\f$ given by: // // - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2)) \f$ // - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2))\f$ // // This representation of the immersion in \f$R^3 \f$ is formed by taking two Mobius // This representation of the immersion in \f$R^3\f$ is formed by taking two Mobius // strips and joining them along their boundaries, this is the so called // "Figure-8 Klein Bottle" ... ... @@ -63,10 +63,10 @@ public: // Description: // A Figure-8 Klein bottle. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -18,11 +18,11 @@ // bottle. A Klein bottle is a closed surface with no interior and only one // surface. It is unrealisable in 3 dimensions without intersecting // surfaces. It can be // realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4 \f$ given by: // realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4\f$ given by: // // - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2)) \f$ // - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2))\f$ // // The classical representation of the immersion in \f$R^3\f$ is returned by this function. // The classical representation of the immersion in \f$R^3\f$ is returned by this function. // // .SECTION Thanks // Andrew Maclean a.maclean@cas.edu.au for creating and contributing the ... ... @@ -56,10 +56,10 @@ public: // Description: // A Klein bottle. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -54,10 +54,10 @@ public: // Description: // The Mobius strip. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -131,10 +131,10 @@ public: // to build the vectors of coordinates required to generate the point Pt. // Pt represents the sum of all the amplitudes over the space. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -54,10 +54,10 @@ public: // Description: // Steiner's Roman Surface // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
 ... ... @@ -84,11 +84,11 @@ public: // Description: // A superellipsoid. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw,Pt,Duvw. ... ... @@ -103,7 +103,7 @@ public: // If the user does not need to calculate a scalar, then the // instantiated function should return zero. // double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricSuperEllipsoid(); ... ...
 ... ... @@ -101,11 +101,11 @@ public: // Description: // A supertoroid. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw,Pt,Duvw. ... ... @@ -120,7 +120,7 @@ public: // If the user does not need to calculate a scalar, then the // instantiated function should return zero. // double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricSuperToroid(); ... ...
 ... ... @@ -62,10 +62,10 @@ public: // Description: // A torus. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x) \f$, returning it // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ . // Then the normal is \f$N = Du X Dv \f$ . // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!