Commit 12e72671 authored by Andrew Maclean's avatar Andrew Maclean

ENH: removed space after opening \f$ and before closing \f$, Added virtual...

ENH:   removed space after opening \f$ and before closing \f$, Added virtual to some functions declarations.
parent dbeb1b63
......@@ -57,11 +57,11 @@ public:
// Description:
// Boy's surface.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
......@@ -76,7 +76,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricBoy();
......
......@@ -73,11 +73,11 @@ public:
// Description:
// A conic spiral surface.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
......@@ -91,7 +91,7 @@ public:
//
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricConicSpiral();
......
......@@ -50,11 +50,11 @@ public:
// Description:
// A cross-cap.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
......@@ -69,7 +69,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricCrossCap();
......
......@@ -63,11 +63,11 @@ public:
// Description:
// Dini's surface.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
......@@ -82,7 +82,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricDini();
......
......@@ -70,11 +70,11 @@ public:
// Description:
// An ellipsoid.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
......@@ -89,7 +89,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricEllipsoid();
......
......@@ -50,11 +50,11 @@ public:
// Description:
// Enneper's surface.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
......@@ -69,7 +69,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricEnneper();
......
......@@ -17,11 +17,11 @@
// vtkParametricFigure8Klein generates a figure-8 Klein bottle. A Klein bottle
// is a closed surface with no interior and only one surface. It is
// unrealisable in 3 dimensions without intersecting surfaces. It can be
// realised in 4 dimensions by considering the map \f$ F:R^2 \rightarrow R^4 \f$ given by:
// realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4\f$ given by:
//
// - \f$ f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2)) \f$
// - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2))\f$
//
// This representation of the immersion in \f$ R^3 \f$ is formed by taking two Mobius
// This representation of the immersion in \f$R^3\f$ is formed by taking two Mobius
// strips and joining them along their boundaries, this is the so called
// "Figure-8 Klein Bottle"
......@@ -63,10 +63,10 @@ public:
// Description:
// A Figure-8 Klein bottle.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -18,11 +18,11 @@
// bottle. A Klein bottle is a closed surface with no interior and only one
// surface. It is unrealisable in 3 dimensions without intersecting
// surfaces. It can be
// realised in 4 dimensions by considering the map \f$ F:R^2 \rightarrow R^4 \f$ given by:
// realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4\f$ given by:
//
// - \f$ f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2)) \f$
// - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2))\f$
//
// The classical representation of the immersion in \f$ R^3\f$ is returned by this function.
// The classical representation of the immersion in \f$R^3\f$ is returned by this function.
//
// .SECTION Thanks
// Andrew Maclean a.maclean@cas.edu.au for creating and contributing the
......@@ -56,10 +56,10 @@ public:
// Description:
// A Klein bottle.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -54,10 +54,10 @@ public:
// Description:
// The Mobius strip.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -131,10 +131,10 @@ public:
// to build the vectors of coordinates required to generate the point Pt.
// Pt represents the sum of all the amplitudes over the space.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -54,10 +54,10 @@ public:
// Description:
// Steiner's Roman Surface
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
......@@ -84,11 +84,11 @@ public:
// Description:
// A superellipsoid.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
......@@ -103,7 +103,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricSuperEllipsoid();
......
......@@ -101,11 +101,11 @@ public:
// Description:
// A supertoroid.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
......@@ -120,7 +120,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricSuperToroid();
......
......@@ -62,10 +62,10 @@ public:
// Description:
// A torus.
//
// This function performs the mapping \f$ f(u,v) \rightarrow (x,y,x) \f$, returning it
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$ Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv) \f$ .
// Then the normal is \f$ N = Du X Dv \f$ .
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment