vtkWindBladeReader.cxx 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*=========================================================================

Program:   Visualization Toolkit
Module:    vtkWindBladeReader.cxx

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkWindBladeReader.h"

#include "vtkCallbackCommand.h"
#include "vtkCellData.h"
#include "vtkCellType.h"
#include "vtkDataArraySelection.h"
#include "vtkFloatArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkStructuredGrid.h"
#include "vtkUnstructuredGrid.h"
#include "vtkStreamingDemandDrivenPipeline.h"

31 32 33 34 35 36 37 38
#include "vtkStringArray.h"
#include "vtkFloatArray.h"
#include "vtkIntArray.h"
#include "vtkPoints.h"
#include "vtkStructuredGrid.h"
#include "vtkUnstructuredGrid.h"
#include "vtkMultiBlockDataSetAlgorithm.h"

39 40 41 42 43 44 45 46 47
#include <vtkstd/string>
#include <vtksys/ios/sstream>
#include <vtksys/ios/iostream>

#include "vtkMultiProcessController.h"

using namespace vtkstd;

#ifdef WIN32
48
static const char * Slash = "\\";
49
#else
50
static const char * Slash = "/";
51 52
#endif

53
vtkCxxRevisionMacro(vtkWindBladeReader, "1.8");
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
vtkStandardNewMacro(vtkWindBladeReader);

//----------------------------------------------------------------------------
// Constructor for WindBlade Reader
//----------------------------------------------------------------------------
vtkWindBladeReader::vtkWindBladeReader()
{
  this->Filename = NULL;
  this->SetNumberOfInputPorts(0);

  // Set up two output ports, one for fields, one for blades
  this->SetNumberOfOutputPorts(2);

  // Irregularly spaced grid description for entire problem
  this->Points = vtkPoints::New();
69 70 71 72
  this->xSpacing = vtkFloatArray::New();
  this->ySpacing = vtkFloatArray::New();
  this->zSpacing = vtkFloatArray::New();
  this->zTopographicValues = 0;
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

  // Blade geometry
  this->BPoints = vtkPoints::New();
  this->NumberOfBladePoints = 0;
  this->NumberOfBladeCells = 0;

  // Static tower information
  this->NumberOfBladeTowers = 0;
  this->XPosition = vtkFloatArray::New();
  this->YPosition = vtkFloatArray::New();
  this->HubHeight = vtkFloatArray::New();
  this->BladeCount = vtkIntArray::New();

  // Options to include extra files for topography and turbines
  this->UseTopographyFile = 0;
  this->UseTurbineFile = 0;

  // Setup selection callback to modify this object when array selection changes
  this->SelectionObserver = vtkCallbackCommand::New();
  this->SelectionObserver->SetCallback(&vtkWindBladeReader::SelectionCallback);
  this->SelectionObserver->SetClientData(this);

  this->PointDataArraySelection = vtkDataArraySelection::New();
  this->PointDataArraySelection->AddObserver(vtkCommand::ModifiedEvent,
                                             this->SelectionObserver);

  // Variables need to be divided by density
  this->NumberOfTimeSteps = 1;
  this->NumberOfVariables = 0;
  this->DivideVariables = vtkStringArray::New();
  this->DivideVariables->InsertNextValue("UVW");
  this->DivideVariables->InsertNextValue("A-scale turbulence");
  this->DivideVariables->InsertNextValue("B-scale turbulence");
  this->DivideVariables->InsertNextValue("Oxygen");

  // Set rank and total number of processors
  this->MPIController = vtkMultiProcessController::GetGlobalController();
  
  if(this->MPIController)
    {
    this->Rank = this->MPIController->GetLocalProcessId();
    this->TotalRank = this->MPIController->GetNumberOfProcesses();
    }
  else
    {
    this->Rank = 0;
    this->TotalRank = 1;
    }

}

//----------------------------------------------------------------------------
// Destructor for WindBlade Reader
//----------------------------------------------------------------------------
vtkWindBladeReader::~vtkWindBladeReader()
{
  if (this->Filename)
    {
      delete[] this->Filename;
    }
  this->PointDataArraySelection->Delete();
  this->DivideVariables->Delete();

  this->XPosition->Delete();
  this->YPosition->Delete();
  this->HubHeight->Delete();
  this->BladeCount->Delete();
140 141 142 143 144 145
  this->xSpacing->Delete();
  this->ySpacing->Delete();
  this->zSpacing->Delete();

  if (this->zTopographicValues != 0)
    delete [] zTopographicValues;
146 147 148

  this->Points->Delete();
  this->BPoints->Delete();
149

150 151
  this->SelectionObserver->Delete();
  
152 153 154
  // Do not delete the MPIController it is Singleton like and will
  // cleanup itself;
  this->MPIController = NULL;
155 156 157 158 159 160 161 162 163 164 165 166
}

//----------------------------------------------------------------------------
// Print information about WindBlade Reader
//----------------------------------------------------------------------------
void vtkWindBladeReader::PrintSelf(ostream &os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);

  os << indent << "FileName: "
     << (this->Filename ? this->Filename : "(NULL)") << endl;

167 168 169 170 171 172 173 174
  os << indent << "WholeExent: {" << this->WholeExtent[0] << ", " 
     << this->WholeExtent[1] << ", " << this->WholeExtent[2] << ", "
     << this->WholeExtent[3] << ", " << this->WholeExtent[4] << ", "
     << this->WholeExtent[5] << "}" << endl;
  os << indent << "SubExtent: {" << this->SubExtent[0] << ", " 
     << this->SubExtent[1] << ", " << this->SubExtent[2] << ", "
     << this->SubExtent[3] << ", " << this->SubExtent[4] << ", "
     << this->SubExtent[5] << "}" << endl;
175 176 177 178 179 180 181 182
  os << indent << "VariableArraySelection:" << endl;
  this->PointDataArraySelection->PrintSelf(os, indent.GetNextIndent());
}

//----------------------------------------------------------------------------
// RequestInformation supplies global meta information
//----------------------------------------------------------------------------
int vtkWindBladeReader::RequestInformation(
183 184
      vtkInformation* vtkNotUsed(request),
      vtkInformationVector** vtkNotUsed(inputVector),
185 186
      vtkInformationVector* outputVector)
{ 
187 188 189 190 191 192
  // Verify that file exists
  if ( !this->Filename ) {
    vtkErrorMacro("No filename specified");
    return 0;
  }

193 194 195 196
  // Get ParaView information and output pointers
  vtkInformation* fieldInfo = outputVector->GetInformationObject(0);
  vtkStructuredGrid *field = vtkStructuredGrid::SafeDownCast(
                             fieldInfo->Get(vtkDataObject::DATA_OBJECT()));
197
  vtkInformation* bladeInfo = outputVector->GetInformationObject(1);
198
  vtkUnstructuredGrid* blade = GetBladeOutput();
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

  // Read global size and variable information from input file one time
  if (this->NumberOfVariables == 0) {

    // Read the size of the problem and variables in data set
    ReadGlobalData();

    // If turbine file exists setup number of cells and points in blades, towers
    if (this->UseTurbineFile == 1)
      SetupBladeData();

    // Allocate the ParaView data arrays which will hold the variable data
    this->data = new vtkFloatArray*[this->NumberOfVariables];
    for (int var = 0; var < this->NumberOfVariables; var++) {
      this->data[var] = vtkFloatArray::New();
      this->data[var]->SetName(VariableName[var].c_str());
      this->PointDataArraySelection->AddArray(this->VariableName[var].c_str());
    }

    // Set up extent information manually for now
    this->WholeExtent[0] = this->WholeExtent[2] = this->WholeExtent[4] = 0;
    this->WholeExtent[1] = this->Dimension[0] - 1;
    this->WholeExtent[3] = this->Dimension[1] - 1;
    this->WholeExtent[5] = this->Dimension[2] - 1;     

    field->SetWholeExtent(this->WholeExtent);
225
    field->SetDimensions(this->Dimension);
226 227
    fieldInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
                   this->WholeExtent, 6);
228 229 230 231
    blade->SetWholeExtent(this->WholeExtent);

    // Create the rectilinear coordinate spacing for entire problem
    CreateCoordinates();
232

233
    // Collect temporal information and attach to both output ports
234 235 236 237 238 239 240 241 242 243 244 245 246
    this->TimeSteps = NULL;

    if (this->NumberOfTimeSteps > 0) {
      this->TimeSteps = new double[this->NumberOfTimeSteps];

      this->TimeSteps[0] = (double) this->TimeStepFirst;
      for (int step = 1; step < this->NumberOfTimeSteps; step++)
        this->TimeSteps[step] = this->TimeSteps[step-1] + 
                                (double) this->TimeStepDelta;

      // Tell the pipeline what steps are available
      fieldInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_STEPS(),
                     this->TimeSteps, this->NumberOfTimeSteps);
247 248
      bladeInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_STEPS(),
                     this->TimeSteps, this->NumberOfTimeSteps);
249 250 251 252 253 254

      // Range is required to get GUI to show things
      double tRange[2];
      tRange[0] = this->TimeSteps[0];
      tRange[1] = this->TimeSteps[this->NumberOfTimeSteps - 1];
      fieldInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_RANGE(), tRange, 2);
255
      bladeInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_RANGE(), tRange, 2);
256 257 258 259
    } else {
      fieldInfo->Remove(vtkStreamingDemandDrivenPipeline::TIME_STEPS());
      fieldInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_STEPS(),
                   this->TimeSteps, this->NumberOfTimeSteps);
260 261 262
      bladeInfo->Remove(vtkStreamingDemandDrivenPipeline::TIME_STEPS());
      bladeInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_STEPS(),
                   this->TimeSteps, this->NumberOfTimeSteps);
263 264 265 266 267 268 269
    }
  }
  return 1;
}

//----------------------------------------------------------------------------
// RequestData populates the output object with data for rendering
270
// Uses two output ports (one for fields and one for turbine blades).
271 272 273 274 275 276
//----------------------------------------------------------------------------
int vtkWindBladeReader::RequestData(
      vtkInformation *vtkNotUsed(reqInfo),
      vtkInformationVector **vtkNotUsed(inVector),
      vtkInformationVector *outVector)
{
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  int port = reqInfo->Get(vtkDemandDrivenPipeline::FROM_OUTPUT_PORT());

  // Request data for field port
  if (port == 0) {

    // Get the information and output pointers
    vtkInformation* fieldInfo = outVector->GetInformationObject(0);
    vtkStructuredGrid *field = GetFieldOutput();

    // Set the extent info for this processor
    fieldInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),
                   this->SubExtent);
    field->SetExtent(this->SubExtent);

    // Set the rectilinear coordinates matching the requested subextents
    // Extents may include ghost cells for filters that require them
    FillCoordinates();
    field->SetPoints(this->Points);

    this->SubDimension[0] = this->SubExtent[1] - this->SubExtent[0] + 1;
    this->SubDimension[1] = this->SubExtent[3] - this->SubExtent[2] + 1;
    this->SubDimension[2] = this->SubExtent[5] - this->SubExtent[4] + 1;

    this->NumberOfTuples = 1;
    for (int dim = 0; dim < DIMENSION; dim++)
      this->NumberOfTuples *= this->SubDimension[dim];

    // Collect the time step requested
    double* requestedTimeSteps = NULL;
    int numRequestedTimeSteps = 0;
    vtkInformationDoubleVectorKey* timeKey =
      static_cast<vtkInformationDoubleVectorKey*>
        (vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS());

    if (fieldInfo->Has(timeKey)) {
      numRequestedTimeSteps = fieldInfo->Length(timeKey);
      requestedTimeSteps = fieldInfo->Get(timeKey);
    }
315

316 317 318
    // Actual time for the time step
    double dTime = requestedTimeSteps[0];
    field->GetInformation()->Set(vtkDataObject::DATA_TIME_STEPS(), &dTime, 1);
319

320 321 322 323 324
    // Index of the time step to request
    int timeStep = 0;
    while (timeStep < this->NumberOfTimeSteps &&
           this->TimeSteps[timeStep] < dTime)
      timeStep++;
325

326
    // Open the data file for time step if needed
327 328 329 330 331 332 333 334 335 336
    ostringstream fileName;
    fileName << this->RootDirectory << Slash
             << this->DataDirectory << Slash << this->DataBaseName 
             << this->TimeSteps[timeStep];
    this->FilePtr = fopen(fileName.str().c_str(), "r");
    if (this->FilePtr == NULL)
      cout << "Could not open file " << fileName.str() << endl;
    if (this->Rank == 0)
      cout << "Load file " << fileName.str() << endl;

337 338 339 340
    // Some variables depend on others, so force their loading
    for (int i = 0; i < this->DivideVariables->GetNumberOfTuples(); i++)
      if (GetPointArrayStatus(this->DivideVariables->GetValue(i)))
        SetPointArrayStatus("Density", 1);
341

342 343 344
    // Examine each file variable to see if it is selected and load
    for (int var = 0; var < this->NumberOfFileVariables; var++) {
      if (this->PointDataArraySelection->GetArraySetting(var)) {
345
        LoadVariableData(var);
346 347
        field->GetPointData()->AddArray(this->data[var]);
      }
348 349
    }

350 351 352
    // Divide variables by Density if required
    for (int i = 0; i < this->DivideVariables->GetNumberOfTuples(); i++)
      if (GetPointArrayStatus(this->DivideVariables->GetValue(i)))
353 354
        DivideByDensity(this->DivideVariables->GetValue(i));

355 356 357 358 359 360
    // Calculate pressure if requested
    if (GetPointArrayStatus("Pressure")) {
      int pressure = this->PointDataArraySelection->GetArrayIndex("Pressure");
      int pre = this->PointDataArraySelection->GetArrayIndex("Pressure-Pre");
      int tempg = this->PointDataArraySelection->GetArrayIndex("tempg");
      int density = this->PointDataArraySelection->GetArrayIndex("Density");
361

362 363 364 365
      CalculatePressure(pressure, pre, tempg, density);
      field->GetPointData()->AddArray(this->data[pressure]);
      field->GetPointData()->AddArray(this->data[pressure + 1]);
    }
366

367 368 369 370 371
    // Calculate vorticity if requested
    if (GetPointArrayStatus("Vorticity")) {
      int vort = this->PointDataArraySelection->GetArrayIndex("Vorticity");
      int uvw = this->PointDataArraySelection->GetArrayIndex("UVW");
      int density = this->PointDataArraySelection->GetArrayIndex("Density");
372 373

      CalculateVorticity(vort, uvw, density);
374 375 376
      field->GetPointData()->AddArray(this->data[vort]);
    }
    // Close file after all data is read
377 378
    fclose(this->FilePtr);
  }
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

  // Request data is on blade
  else if (port == 1) {
    if (this->UseTurbineFile == 1 && this->Rank == 0) {
    
      vtkInformation* bladeInfo = outVector->GetInformationObject(1);
      vtkUnstructuredGrid* blade = GetBladeOutput();
        
      // Collect the time step requested
      double* requestedTimeSteps = NULL;
      int numRequestedTimeSteps = 0;
      vtkInformationDoubleVectorKey* timeKey =
        static_cast<vtkInformationDoubleVectorKey*>
          (vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS());
      
      if (bladeInfo->Has(timeKey)) {
        numRequestedTimeSteps = bladeInfo->Length(timeKey);
        requestedTimeSteps = bladeInfo->Get(timeKey);
      } 
      
      // Actual time for the time step
      double dTime = requestedTimeSteps[0];
      blade->GetInformation()->Set(vtkDataObject::DATA_TIME_STEPS(), &dTime, 1);
    
      // Index of the time step to request
      int timeStep = 0;
      while (timeStep < this->NumberOfTimeSteps &&
             this->TimeSteps[timeStep] < dTime)
        timeStep++;
      
      LoadBladeData(timeStep);
    } 
  }   
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
  return 1;
}

//----------------------------------------------------------------------------
// Divide data variable by density for display
//----------------------------------------------------------------------------
void vtkWindBladeReader::DivideByDensity(const char* varName)
{
  int var = this->PointDataArraySelection->GetArrayIndex(varName);
  int density = this->PointDataArraySelection->GetArrayIndex("Density");

  float* varData = this->data[var]->GetPointer(0);
  float* densityData = this->data[density]->GetPointer(0);

  int numberOfTuples = this->data[var]->GetNumberOfTuples();
  int numberOfComponents = this->data[var]->GetNumberOfComponents();

  int index = 0;
  for (int i = 0; i < numberOfTuples; i++) {
    for (int j = 0; j < numberOfComponents; j++) {
      varData[index++] /= densityData[i];
    }
  }
}

//----------------------------------------------------------------------------
// Calculate pressure from tempg and density
// Calculate pressure - pre from pressure in first z position
// Requires that all data be present
//----------------------------------------------------------------------------
void vtkWindBladeReader::CalculatePressure(int pressure, int prespre,
                                           int tempg, int density)
{
  // Set the number of components and tuples for the requested data
  this->data[pressure]->SetNumberOfComponents(1);
  this->data[pressure]->SetNumberOfTuples(this->NumberOfTuples);
  float* pressureData = this->data[pressure]->GetPointer(0);

  this->data[prespre]->SetNumberOfComponents(1);
  this->data[prespre]->SetNumberOfTuples(this->NumberOfTuples);
  float* prespreData = this->data[prespre]->GetPointer(0);

  // Read tempg and Density components from file
  float* tempgData = new float[this->BlockSize];
  float* densityData = new float[this->BlockSize];
  fseek(this->FilePtr, this->VariableOffset[tempg], SEEK_SET);
  fread(tempgData, sizeof(float), this->BlockSize, this->FilePtr);
  fseek(this->FilePtr, this->VariableOffset[density], SEEK_SET);
  fread(densityData, sizeof(float), this->BlockSize, this->FilePtr);

  // Entire block of data is read so to calculate index into that data we
  // must use the entire Dimension and not the SubDimension
  int planeSize = this->Dimension[0] * this->Dimension[1];
  int rowSize = this->Dimension[0];
    
  // Pressure - pre needs the first XY plane pressure values
  float* firstPressure = new float[this->Dimension[2]];
  for (int k = 0; k < this->Dimension[2]; k++) {
    int index = k * planeSize;
    firstPressure[k] = densityData[index] * DRY_AIR_CONSTANT * tempgData[index];
  }

  // Only the requested subextents are stored on this processor
  int pos = 0;
  for (int k = this->SubExtent[4]; k <= this->SubExtent[5]; k++) {
    for (int j = this->SubExtent[2]; j <= this->SubExtent[3]; j++) {
      for (int i = this->SubExtent[0]; i <= this->SubExtent[1]; i++) {
        int index = (k * planeSize) + (j * rowSize) + i;

        // Pressure is function of density and tempg for the same position
        // Pressure - pre is the pressure at a position minus the pressure
        // from the first value in the z plane

        pressureData[pos] = densityData[index] * 
                            DRY_AIR_CONSTANT * tempgData[index];
        prespreData[pos] = pressureData[pos] - firstPressure[k];
        pos++;
      }
    }
  }
  delete [] tempgData;
  delete [] densityData;
  delete [] firstPressure;
}

//----------------------------------------------------------------------------
// Calculate vorticity from UVW
// Requires ghost cell information so fetch all data from files for now
//----------------------------------------------------------------------------
void vtkWindBladeReader::CalculateVorticity(int vort, int uvw, int density)
{
  // Set the number of components and tuples for the requested data
  this->data[vort]->SetNumberOfComponents(1);
  this->data[vort]->SetNumberOfTuples(this->NumberOfTuples);
  float* vortData = this->data[vort]->GetPointer(0);

  // Read U and V components (two int block sizes in between)
  float* uData = new float[this->BlockSize];
  float* vData = new float[this->BlockSize];
  fseek(this->FilePtr, this->VariableOffset[uvw], SEEK_SET);
  fread(uData, sizeof(float), this->BlockSize, this->FilePtr);
  fseek(this->FilePtr, (2 * sizeof(int)), SEEK_SET);
  fread(vData, sizeof(float), this->BlockSize, this->FilePtr);

  // Read Density component
  float* densityData = new float[this->BlockSize];
  fseek(this->FilePtr, this->VariableOffset[density], SEEK_SET);
  fread(densityData, sizeof(float), this->BlockSize, this->FilePtr);

  // Divide U and V components by Density
  for (int i = 0; i < this->BlockSize; i++) {
    uData[i] /= densityData[i];
    vData[i] /= densityData[i];
  }

  // Entire block of data is read so to calculate index into that data we
  // must use the entire Dimension and not the SubDimension
  // Only the requested subextents are stored on this processor
  int planeSize = this->Dimension[0] * this->Dimension[1];
  int rowSize = this->Dimension[0];
    
  // Initialize to 0.0 because edges have no values
  int pos = 0;
  for (int k = this->SubExtent[4]; k <= this->SubExtent[5]; k++)
    for (int j = this->SubExtent[2]; j <= this->SubExtent[3]; j++)
      for (int i = this->SubExtent[0]; i <= this->SubExtent[1]; i++)
        vortData[pos++] = 0.0;

  // For inner positions calculate vorticity
  pos = 0;
  float ddx = this->Step[0];
  float ddy = this->Step[1];

  for (int k = this->SubExtent[4]; k <= this->SubExtent[5]; k++) {
    for (int j = this->SubExtent[2]; j <= this->SubExtent[3]; j++) {
      for (int i = this->SubExtent[0]; i <= this->SubExtent[1]; i++) {

        // Edges are initialized to 0
        if (j == this->SubExtent[2] || j == this->SubExtent[3] ||
            i == this->SubExtent[0] || i == this->SubExtent[1]) {
              pos++;
        } else {
          // Vorticity depends on four cells surrounding this cell
          int index_vp = (k * planeSize) + (j * rowSize) + (i + 1);
          int index_vm = (k * planeSize) + (j * rowSize) + (i - 1);
          int index_up = (k * planeSize) + ((j + 1) * rowSize) + i;
          int index_um = (k * planeSize) + ((j - 1) * rowSize) + i;

          vortData[pos++] = ((vData[index_vp] - vData[index_vm]) / ddx) -
                            ((uData[index_up] - uData[index_um]) / ddy);
        }
      }
    }
  }
  delete [] uData;
  delete [] vData;
  delete [] densityData;
} 

//----------------------------------------------------------------------------
// Load one variable data array of BLOCK structure into ParaView
//----------------------------------------------------------------------------
void vtkWindBladeReader::LoadVariableData(int var)
{
  // Skip to the appropriate variable block and read byte count
577
  // not used? int byteCount;
578 579 580
  fseek(this->FilePtr, this->VariableOffset[var], SEEK_SET);

  // Set the number of components for this variable
581
  int numberOfComponents = 0;
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
  if (this->VariableStruct[var] == SCALAR) {
    numberOfComponents = 1;
    this->data[var]->SetNumberOfComponents(numberOfComponents);
  }
  else if (this->VariableStruct[var] == VECTOR) {
    numberOfComponents = DIMENSION;
    this->data[var]->SetNumberOfComponents(numberOfComponents);
  }

  // Set the number of tuples which will allocate all tuples
  this->data[var]->SetNumberOfTuples(this->NumberOfTuples);

  // For each component of the requested variable load data
  float* block = new float[this->BlockSize];
  float* varData = this->data[var]->GetPointer(0);

  // Entire block of data is read so to calculate index into that data we
  // must use the entire Dimension and not the SubDimension
  // Only the requested subextents are stored on this processor
  int planeSize = this->Dimension[0] * this->Dimension[1];
  int rowSize = this->Dimension[0];
    
  for (int comp = 0; comp < numberOfComponents; comp++) {

    // Read the block of data
    fread(block, sizeof(float), this->BlockSize, this->FilePtr);
    
    int pos = comp;
    for (int k = this->SubExtent[4]; k <= this->SubExtent[5]; k++) {
      for (int j = this->SubExtent[2]; j <= this->SubExtent[3]; j++) {
        for (int i = this->SubExtent[0]; i <= this->SubExtent[1]; i++) {
          int index = (k * planeSize) + (j * rowSize) + i;
          varData[pos] = block[index];
          pos += numberOfComponents;
        }
      }
    }

    // Skip closing and opening byte sizes
    fseek(this->FilePtr, (2 * sizeof(int)), SEEK_CUR);
  }
  delete [] block;
}

//----------------------------------------------------------------------------
// Load one variable data array of BLOCK structure into ParaView
//----------------------------------------------------------------------------
void vtkWindBladeReader::ReadGlobalData()
{
  ifstream inStr(this->Filename);
  if (!inStr) {
    cout << "Could not open the global .wind file " << this->Filename << endl;
  }

  string::size_type dirPos = string(this->Filename).rfind(Slash);
   if (dirPos == string::npos) {
      cout << "Bad input file name " << this->Filename << endl;
   }
  this->RootDirectory = string(this->Filename).substr(0, dirPos);

  char inBuf[LINE_SIZE];
  string keyword;
  string rest;
  string headerVersion;

  while (inStr.getline(inBuf, LINE_SIZE)) {
    if (inBuf[0] != '#' && inStr.gcount() > 1) {

      string line(inBuf);
      string::size_type keyPos = line.find(' ');
      keyword = line.substr(0, keyPos);
      rest = line.substr(keyPos + 1);
      istringstream lineStr(rest.c_str());

      // Header information
      if (keyword == "WIND_HEADER_VERSION")
        lineStr >> headerVersion;

      // Topology variables
      else if (keyword == "GRID_SIZE_X")
        lineStr >> this->Dimension[0];
      else if (keyword == "GRID_SIZE_Y")
        lineStr >> this->Dimension[1];
      else if (keyword == "GRID_SIZE_Z")
        lineStr >> this->Dimension[2];
      else if (keyword == "GRID_DELTA_X")
        lineStr >> this->Step[0];
      else if (keyword == "GRID_DELTA_Y")
        lineStr >> this->Step[1];
      else if (keyword == "GRID_DELTA_Z")
        lineStr >> this->Step[2];

      // Geometry variables
      else if (keyword == "USE_TOPOGRAPHY_FILE")
        lineStr >> this->UseTopographyFile;
      else if (keyword == "TOPOGRAPHY_FILE")
        this->TopographyFile = rest;
      else if (keyword == "COMPRESSION")
        lineStr >> this->Compression;
      else if (keyword == "FIT")
        lineStr >> this->Fit;

      // Time variables
      else if (keyword == "TIME_STEP_FIRST")
        lineStr >> this->TimeStepFirst;
      else if (keyword == "TIME_STEP_LAST")
        lineStr >> this->TimeStepLast;
      else if (keyword == "TIME_STEP_DELTA")
        lineStr >> this->TimeStepDelta;

      // Turbine variables
      else if (keyword == "USE_TURBINE_FILE")
        lineStr >> this->UseTurbineFile;
      else if (keyword == "TURBINE_DIRECTORY")
        this->TurbineDirectory = rest;
      else if (keyword == "TURBINE_TOWER")
        this->TurbineTowerName = rest;
      else if (keyword == "TURBINE_BLADE")
        this->TurbineBladeName = rest;

      // Data variables
      else if (keyword == "DATA_DIRECTORY")
        this->DataDirectory = rest;
      else if (keyword == "DATA_BASE_FILENAME")
        this->DataBaseName = rest;
      else if (keyword == "DATA_VARIABLES") {
        lineStr >> this->NumberOfFileVariables;
        ReadDataVariables(inStr);
        FindVariableOffsets();
      }
    }
  }
  if (this->TimeStepFirst < this->TimeStepLast)
    this->NumberOfTimeSteps = ((this->TimeStepLast - this->TimeStepFirst) /
                                this->TimeStepDelta) + 1;
}

//----------------------------------------------------------------------------
//
// Read the field variable information
//
//----------------------------------------------------------------------------
void vtkWindBladeReader::ReadDataVariables(ifstream& inStr)
{
  char inBuf[LINE_SIZE];
  string structType, basicType;

  // Derive Vorticity = f(UVW, Density)
  // Derive Pressure = f(tempg, Density)
  // Derive Pressure - pre = f(Pressure)
  this->NumberOfDerivedVariables = 3;
  this->NumberOfVariables = this->NumberOfFileVariables;
  int totalVariables = this->NumberOfFileVariables + 
                       this->NumberOfDerivedVariables;

  this->VariableName = new vtkStdString[totalVariables];
  this->VariableStruct = new int[totalVariables];
  this->VariableCompSize = new int[totalVariables];
  this->VariableBasicType = new int[totalVariables];
  this->VariableByteCount = new int[totalVariables];
  this->VariableOffset = new long int[totalVariables];

  bool hasUVW = false;
  bool hasDensity = false;
  bool hasTempg = false;

  for (int i = 0; i < this->NumberOfFileVariables; i++) {
    inStr.getline(inBuf, LINE_SIZE);

    // Variable name
    string varLine(inBuf);
    string::size_type lastPos = varLine.rfind('"');
    this->VariableName[i] = varLine.substr(1, lastPos-1);

    if (this->VariableName[i] == "UVW") hasUVW = true;
    if (this->VariableName[i] == "Density") hasDensity = true;
    if (this->VariableName[i] == "tempg") hasTempg = true;

    // Structure, number of components, type, number of bytes
    string rest = varLine.substr(lastPos+1);
    istringstream line(rest);

    line >> structType;
    line >> this->VariableCompSize[i];

    if (structType == "SCALAR")
      this->VariableStruct[i] = SCALAR;
    else if (structType == "VECTOR")
      this->VariableStruct[i] = VECTOR;
    else
      cout << "Error in structure type " << structType << endl;

    line >> basicType;
    line >> this->VariableByteCount[i];

    if (basicType == "FLOAT")
      this->VariableBasicType[i] = FLOAT;
    else if (basicType == "INTEGER")
      this->VariableBasicType[i] = INTEGER;
    else
      cout << "Error in basic type " << basicType << endl;
  }

  // Add any derived variables
  if (hasUVW && hasDensity) {
    this->VariableName[this->NumberOfVariables] = "Vorticity";
    this->NumberOfVariables++;
  }
  if (hasTempg && hasDensity) {
    this->VariableName[this->NumberOfVariables] = "Pressure";
    this->NumberOfVariables++;
    this->VariableName[this->NumberOfVariables] = "Pressure-Pre";
    this->NumberOfVariables++;
  }
}

//----------------------------------------------------------------------------
//
// Open the first data file and verify that the data is where is should be
// Each data block is enclosed by two ints which record the number of bytes
// Save the file offset for each varible
//
//----------------------------------------------------------------------------
void vtkWindBladeReader::FindVariableOffsets()
{
  // Open the first data file
  ostringstream fileName; 
  fileName << this->RootDirectory << Slash
           << this->DataDirectory << Slash 
           << this->DataBaseName << this->TimeStepFirst;
  this->FilePtr = fopen(fileName.str().c_str(), "r");
  if (this->FilePtr == NULL) {
    cout << "Could not open file " << fileName.str() << endl;
    exit(1);
  }

  // Scan file recording offsets which points to the first data value
  int byteCount;
  fread(&byteCount, sizeof(int), 1, this->FilePtr);
  this->BlockSize = byteCount / BYTES_PER_DATA;

  for (int var = 0; var < this->NumberOfFileVariables; var++) {
    this->VariableOffset[var] = ftell(this->FilePtr);

    // Skip over the SCALAR or VECTOR components for this variable
    int numberOfComponents = 1;
    if (this->VariableStruct[var] == VECTOR)
      numberOfComponents = DIMENSION;

    for (int comp = 0; comp < numberOfComponents; comp++) {
      // Skip data plus two integer byte counts
      fseek(this->FilePtr, (byteCount+(2 * sizeof(int))), SEEK_CUR);
    }
  }
  fclose(this->FilePtr);
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
//----------------------------------------------------------------------------
// Fill in the rectilinear points for the requested subextents
//----------------------------------------------------------------------------
void vtkWindBladeReader::FillCoordinates()
{
  this->Points->Delete();
  this->Points = vtkPoints::New();

  // If dataset is flat, x and y are constant spacing, z is stretched
  if (this->UseTopographyFile == 0) {

    // Save vtkPoints instead of spacing coordinates because topography file
    // requires this to be vtkStructuredGrid and not vtkRectilinearGrid
    for (int k = this->SubExtent[4]; k <= this->SubExtent[5]; k++) {
      float z = this->zSpacing->GetValue(k);
      for (int j = this->SubExtent[2]; j <= this->SubExtent[3]; j++) {
        float y = this->ySpacing->GetValue(j);
        for (int i = this->SubExtent[0]; i <= this->SubExtent[1]; i++) {
          float x = this->xSpacing->GetValue(i);
          this->Points->InsertNextPoint(x, y, z);
        }
      }
    }
  }

  // If dataset is topographic, x and y are constant spacing center on (0,0)
  // Z data is calculated from an x by y topographic data file
  else {
    int planeSize = this->Dimension[0] * this->Dimension[1];
    int rowSize = this->Dimension[0];

    for (int k = this->SubExtent[4]; k <= this->SubExtent[5]; k++) {
      for (int j = this->SubExtent[2]; j <= this->SubExtent[3]; j++) {
        float y = this->ySpacing->GetValue(j);
        for (int i = this->SubExtent[0]; i <= this->SubExtent[1]; i++) {
          float x = this->xSpacing->GetValue(i);
          int index = (k * planeSize) + (j * rowSize) + i;
          this->Points->InsertNextPoint(x, y, this->zTopographicValues[index]);
        }
      }
    }
  }
}

883 884 885 886 887 888 889 890 891 892
//----------------------------------------------------------------------------
// Calculate the Points for flat Rectilinear type grid or topographic
// generalized StructuredGrid which is what is being created here
//----------------------------------------------------------------------------
void vtkWindBladeReader::CreateCoordinates()
{
  // If dataset is flat, x and y are constant spacing, z is stretched
  if (this->UseTopographyFile == 0) {
    float value = 0.0;
    for (int i = 0; i < this->Dimension[0]; i++) {
893
      this->xSpacing->InsertNextValue(value);
894 895 896 897 898
      value += this->Step[0];
    }

    value = 0.0;
    for (int j = 0; j < this->Dimension[1]; j++) {
899
      this->ySpacing->InsertNextValue(value);
900 901
      value += this->Step[1];
    }
902

903 904 905 906
    double maxZ = this->Step[2] * this->Dimension[2];
    for (int k = 0; k < this->Dimension[2]; k++) {
      double zcoord = (k * this->Step[2]) + (0.5 * this->Step[2]);
      double zcartesian = GDeform(zcoord, maxZ, 0);
907
      this->zSpacing->InsertNextValue(zcartesian);
908 909 910 911 912 913 914 915
    }
  }

  // If dataset is topographic, x and y are constant spacing center on (0,0)
  // Z data is calculated from an x by y topographic data file
  else {
    float xHalf = (((this->Dimension[0] + 1.0) / 2.0) - 1.0) * this->Step[0];
    for (int i = 0; i < this->Dimension[0]; i++)
916
      this->xSpacing->InsertNextValue((i * this->Step[0]) - xHalf);
917 918 919

    float yHalf = (((this->Dimension[1] + 1.0) / 2.0) - 1.0) * this->Step[1];
    for (int j = 0; j < this->Dimension[1]; j++)
920
      this->ySpacing->InsertNextValue((j * this->Step[1]) - yHalf);
921

922 923
    this->zTopographicValues = new float[this->BlockSize];
    CreateZTopography(this->zTopographicValues);
924 925 926 927 928 929 930 931 932
  }
}

//----------------------------------------------------------------------------
// Create the z topography from 2D (x,y) elevations and return in zData
//----------------------------------------------------------------------------
void vtkWindBladeReader::CreateZTopography(float* zValues)
{
  // Read the x,y topography data file
933 934 935 936
  ostringstream fileName;
  fileName << this->RootDirectory << Slash
           << this->TopographyFile;
  FILE* filePtr = fopen(fileName.str().c_str(), "r");
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
  int blockSize = this->Dimension[0] * this->Dimension[1];
  float* topoData = new float[blockSize];

  fseek(filePtr, BYTES_PER_DATA, SEEK_SET);  // Fortran byte count
  fread(topoData, sizeof(float), blockSize, filePtr);

  // Initial z coordinate processing
  float* zedge = new float[this->Dimension[2] + 1];
  float* z = new float[this->Dimension[2]];
  float zb;
  int ibctopbot = 1;

  if (ibctopbot == 1) {
    for (int k = 0; k <= this->Dimension[2]; k++)
      zedge[k] = k * this->Step[2];
    zb = zedge[this->Dimension[2]];
    for (int k = 0; k < this->Dimension[2]; k++)
      z[k] = k * this->Step[2] + 0.5 * this->Step[2];
  }

  else {
    for (int k = 0; k < this->Dimension[2]; k++)
      z[k] = k * this->Step[2];
    zb = z[this->Dimension[2] - 1];
  }

  // Use cubic spline or deformation to calculate z values
  int npoints = 31;
  float* zdata = new float[npoints];
  float* zcoeff = new float[npoints];
  float zcrdata[] = {
        0.0 ,    2.00,    4.00,     6.00,      8.00,
       10.00,   14.00,   18.00,    22.00,     26.00,
       30.00,   34.00,   40.00,    50.00,     70.00,
      100.00,  130.00,  160.00,   200.00,    250.00,
      300.00,  350.00,  450.00,   550.00,    750.00,
      950.00, 1150.00, 1400.00,  1700.00,   2000.00,   2400.00 };

  // No deformation, use spline to define z coefficients
  if (this->Compression == 0.0) {
    for (int i = 0; i < npoints; i++)
      zdata[i] = (z[i] * zb) / z[npoints - 1];

    // Call spline with zcoeff being the answer
    spline(zdata, zcrdata, npoints, 99.0e31, 99.0e31, zcoeff);
  }

  // Fill the zValues array depending on compression
  int planeSize = this->Dimension[0] * this->Dimension[1];
  int rowSize = this->Dimension[0];
  int flag = 0;

  for (int k = 0; k < this->Dimension[2]; k++) {
    for (int j = 0; j < this->Dimension[1]; j++) {
      for (int i = 0; i < this->Dimension[0]; i++) {
        int index = (k * planeSize) + (j * rowSize) + i;
        int tIndex = (j * rowSize) + i;

        if (this->Compression == 0.0) {
          // Use spline interpolation
          float zinterp;
          splint(zdata, zcrdata, zcoeff, npoints, z[k], &zinterp, flag);
          zValues[index] = zinterp;
        } else {
          // Use deformation
          zValues[index] = GDeform(z[k], zb, flag) * 
                                (zb - topoData[tIndex]) / zb + topoData[tIndex];
        }
      }
    }
  }

  delete [] topoData;
  delete [] zedge;
  delete [] z;
  delete [] zdata;
  delete [] zcoeff;
}

//----------------------------------------------------------------------------
//
// Stretch the Z coordinate for flat topography
// If flag = 0 compute gdeform(z)
// If flag = 1 compute derivative of gdeform(z)
// Return cubic polynomial fit
//
//----------------------------------------------------------------------------
float vtkWindBladeReader::GDeform(float sigma, float sigmaMax, int flag)
{
  float sigma_2 = sigma * sigma;
  float sigma_3 = sigma_2 * sigma;

  float f = this->Fit;
  float aa1 = this->Compression;

  float aa2 = (f * (1.0 - aa1)) / sigmaMax;
  float aa3 = (1.0 - (aa2 * sigmaMax) - aa1) / (sigmaMax * sigmaMax);

1035
  float zcoord = 0.0;
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
  if (flag == 0)
    zcoord = (aa3 * sigma_3) + (aa2 * sigma_2) + (aa1 * sigma);
  else if (flag == 1)
    zcoord = (3.0 * aa3 * sigma_2) + (2.0 * aa2 * sigma) + aa1;

  return zcoord;
}

//----------------------------------------------------------------------------
// Cubic spline from Numerical Recipes (altered for zero based arrays)
// Called only once to process entire tabulated function
//
// Given arrays x[0..n-1] and y[0..n-1] containing a tabulated function
// with x0 < x1 < .. < xn-1, and given values yp1 and ypn for the
// first derivative of the interpolating function at points 0 and n-1,
// this routine returns an array y2[0..n-1] that contains the second
// derivatives of the interpolating function.  If yp1 or ypn > e30
// the rougine is signaled to set the corresponding boundary condition
// for a natural spline, with zero second derivative on that boundary.
//----------------------------------------------------------------------------
void vtkWindBladeReader::spline(
      float* x, float* y,  // arrays
      int n,      // size of arrays
      float yp1, float ypn,  // boundary condition
      float* y2)    // return array
{
1062
  float qn, un;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
  float* u = new float[n];

  // Lower boundary condition set to natural spline
  if (yp1 > 0.99e30)
    y2[0] = u[0] = 0.0;

  // Lower boundary condition set to specified first derivative
  else {
    y2[0] = -0.5;
    u[0]=(3.0/(x[1]-x[0]))*((y[1]-y[0])/(x[1]-x[0])-yp1);
  }

  // Decomposition loop of tridiagonal algorithm
  for (int i = 1; i < n-1; i++) {
    float sig = (x[i] - x[i-1]) / (x[i+1] - x[i-1]);
    float p = sig * y2[i-1] + 2.0;
    y2[i] = (sig - 1.0) / p;
    u[i] = (y[i+1] - y[i]) / (x[i+1] - x[i]) - 
           (y[i] - y[i-1]) / (x[i] - x[i-1]);
    u[i] = (6.0 * u[i] / (x[i+1] - x[i-1]) - sig * u[i-1]) / p;
  }

  // Upper boundary condition set to natural spline
  if (ypn > 0.99e30)
    qn = un = 0.0;

  // Upper boundary condition set to specified first derivative
  else {  
    qn = 0.5;
    un = (3.0 / (x[n-1] - x[n-2])) * 
         (ypn - (y[n-1] - y[n-2]) / (x[n-1] -x [n-2]));
  }

  // Back substitution loop of tridiagonal algorithm
  y2[n-1] = (un - qn * u[n-2]) / (qn * y2[n-2] + 1.0);
  for (int k = n - 2; k >= 0; k--)
    y2[k] = y2[k] * y2[k+1] + u[k];

  delete [] u;
}

//----------------------------------------------------------------------------
// Cubic spline interpolation from Numerical Recipes
// Called succeeding times after spline is called once
// Given x, y and y2 arrays from spline return cubic spline interpolated
//----------------------------------------------------------------------------
void vtkWindBladeReader::splint(
      float* xa, float* ya,   // arrays sent to spline()
      float* y2a,     // result from spline()
      int n,      // size of arrays
      float x,    // 
      float* y,    // interpolated value
      int kderivative)
{
  // Find the right place in the table by means of bisection
  // Optimal is sequential calls are at random values of x
  int klo = 0;
  int khi = n - 1;
  while (khi - klo > 1) {
    int k = (khi + klo) / 2;
    if (xa[k] > x)
      khi = k;
    else
      klo = k;
  }

  float h = xa[khi] - xa[klo];
  float a = (xa[khi] - x) / h;
  float b = (x - xa[klo]) / h;
  if (kderivative == 0)
    *y = a * ya[klo] + b * ya[khi] + 
         ((a * a * a - a) * y2a[klo] +
         (b * b * b - b) * y2a[khi]) * (h * h) / 6.0;
  else
    *y = ((ya[khi] - ya[klo]) / h) -
         ((((((3.0 * a * a) - 1.0) * y2a[klo]) -
            (((3.0 * b * b) - 1.0) * y2a[khi])) * h) / 6.0);
}

//----------------------------------------------------------------------------
// Build the turbine towers
// Parse a blade file to set the number of cells and points in blades
//----------------------------------------------------------------------------
void vtkWindBladeReader::SetupBladeData()
{
  // Load the tower information
  ostringstream fileName;
  fileName << this->RootDirectory << Slash 
           << this->TurbineDirectory << Slash 
           << this->TurbineTowerName; 
  ifstream inStr(fileName.str().c_str());
  if (!inStr)
    cout << "Could not open " << fileName << endl;

  // File is ASCII text so read until EOF
  char inBuf[LINE_SIZE];
  float hubHeight, bladeLength, maxRPM, xPos, yPos, yawAngle;
  float angularVelocity, angleBlade1;
  int numberOfBlades;
  int towerID;

  while (inStr.getline(inBuf, LINE_SIZE)) {

    istringstream line(inBuf);
    line >> towerID >> hubHeight >> bladeLength >> numberOfBlades >> maxRPM;
    line >> xPos >> yPos;
    line >> yawAngle >> angularVelocity >> angleBlade1;

    this->XPosition->InsertNextValue(xPos);
    this->YPosition->InsertNextValue(yPos);
    this->HubHeight->InsertNextValue(hubHeight);
    this->BladeCount->InsertNextValue(numberOfBlades);
  }
  this->NumberOfBladeTowers = XPosition->GetNumberOfTuples();
  inStr.close();

  // Calculate the number of cells in unstructured turbine blades
  ostringstream fileName2;
  fileName2 << this->RootDirectory << Slash
            << this->TurbineDirectory << Slash
            << this->TurbineBladeName << this->TimeStepFirst;
  ifstream inStr2(fileName2.str().c_str());
  if (!inStr2)
    cout << "Could not open " << fileName2 << endl;

  this->NumberOfBladeCells = 0;
  while (inStr2.getline(inBuf, LINE_SIZE))
1190
    this->NumberOfBladeCells++;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
  inStr2.close();
  this->NumberOfBladePoints = this->NumberOfBladeCells * NUM_PART_SIDES;

  // Points and cells needed for constant towers
  this->NumberOfBladePoints += this->NumberOfBladeTowers * NUM_BASE_SIDES;
  this->NumberOfBladeCells += this->NumberOfBladeTowers;
}

//----------------------------------------------------------------------------
// Build the turbine blades
//----------------------------------------------------------------------------
void vtkWindBladeReader::LoadBladeData(int timeStep)
{
1204 1205 1206
  this->BPoints->Delete();
  this->BPoints = vtkPoints::New();

1207 1208
  // Open the file for this time step
  ostringstream fileName;
1209 1210 1211
  fileName << this->RootDirectory << Slash
           << this->TurbineDirectory << Slash 
           << this->TurbineBladeName 
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
           << this->TimeSteps[timeStep];
  ifstream inStr(fileName.str().c_str());
  char inBuf[LINE_SIZE];

  // Allocate space for points and cells
  this->BPoints->Allocate(this->NumberOfBladePoints, this->NumberOfBladePoints);
  vtkUnstructuredGrid* blade = GetBladeOutput();
  blade->Allocate(this->NumberOfBladeCells, this->NumberOfBladeCells);
  blade->SetPoints(this->BPoints);

  // Allocate space for data
  vtkFloatArray* axialForce = vtkFloatArray::New();
  axialForce->SetName("Axial Force");
  axialForce->SetNumberOfTuples(this->NumberOfBladeCells);
  axialForce->SetNumberOfComponents(1);
  blade->GetCellData()->AddArray(axialForce);
  float* aBlock = axialForce->GetPointer(0);
  
  vtkFloatArray* radialForce = vtkFloatArray::New();
  radialForce->SetName("Radial Force"); 
  radialForce->SetNumberOfTuples(this->NumberOfBladeCells);
  radialForce->SetNumberOfComponents(1);
  blade->GetCellData()->AddArray(radialForce);
  float* rBlock = radialForce->GetPointer(0);

  vtkFloatArray* test = vtkFloatArray::New();
  test->SetName("Test"); 
  test->SetNumberOfTuples(this->NumberOfBladeCells);
  test->SetNumberOfComponents(1);
  blade->GetCellData()->AddArray(test);
  float* tBlock = test->GetPointer(0);
    
  // File is ASCII text so read until EOF
  int index = 0;
  int indx = 0;
  int firstPoint;
  int turbineID, bladeID, partID;
  float x, y, z;
  vtkIdType cell[NUM_BASE_SIDES];

  while (inStr.getline(inBuf, LINE_SIZE)) {

    istringstream line(inBuf);
    line >> turbineID >> bladeID >> partID;
  
    firstPoint = index;
    for (int side = 0; side < NUM_PART_SIDES; side++) {
      line >> x >> y >> z;
      this->BPoints->InsertNextPoint(x, y, z);
    }

    // Polygon points are leading edge then trailing edge so points are 0-1-3-2
    cell[0] = firstPoint;
    cell[1] = firstPoint + 1;
    cell[2] = firstPoint + 3;
    cell[3] = firstPoint + 2;
    index += NUM_PART_SIDES; 
    blade->InsertNextCell(VTK_POLYGON, NUM_PART_SIDES, cell);
  
    line >> aBlock[indx] >> rBlock[indx];
    tBlock[indx] = turbineID * bladeID;
    indx++;
  }
  
  // Add the towers to the geometry
  for (int i = 0; i < this->NumberOfBladeTowers; i++) {
    x = this->XPosition->GetValue(i);
    y = this->YPosition->GetValue(i);
    z = this->HubHeight->GetValue(i);

    this->BPoints->InsertNextPoint(x-2, y-2, 0.0);
    this->BPoints->InsertNextPoint(x+2, y-2, 0.0);
    this->BPoints->InsertNextPoint(x+2, y+2, 0.0);
    this->BPoints->InsertNextPoint(x-2, y+2, 0.0);
    this->BPoints->InsertNextPoint(x, y, z);
    firstPoint = index;
    cell[0] = firstPoint;
    cell[1] = firstPoint + 1;
    cell[2] = firstPoint + 2;
    cell[3] = firstPoint + 3;
    cell[4] = firstPoint + 4;
    index += NUM_BASE_SIDES;
    blade->InsertNextCell(VTK_PYRAMID, NUM_BASE_SIDES, cell);

    aBlock[indx] = 0.0;
    rBlock[indx] = 0.0;
    tBlock[indx] = 0.0;
    indx++;
  }
  axialForce->Delete();
  radialForce->Delete();
  test->Delete();
}

//----------------------------------------------------------------------------
void vtkWindBladeReader::SelectionCallback(
1308
  vtkObject*, unsigned long vtkNotUsed(eventid), void* clientdata, void* vtkNotUsed(calldata))
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
{
  static_cast<vtkWindBladeReader*>(clientdata)->Modified();
}

//----------------------------------------------------------------------------
vtkStructuredGrid* vtkWindBladeReader::GetFieldOutput()
{
  return vtkStructuredGrid::SafeDownCast(
    this->GetExecutive()->GetOutputData(0));
}

//----------------------------------------------------------------------------
int vtkWindBladeReader::GetNumberOfPointArrays()
{
  return this->PointDataArraySelection->GetNumberOfArrays();
}

//----------------------------------------------------------------------------
void vtkWindBladeReader::EnableAllPointArrays()
{
    this->PointDataArraySelection->EnableAllArrays();
}

//----------------------------------------------------------------------------
void vtkWindBladeReader::DisableAllPointArrays()
{
    this->PointDataArraySelection->DisableAllArrays();
}

//----------------------------------------------------------------------------
const char* vtkWindBladeReader::GetPointArrayName(int index)
{
  return this->VariableName[index].c_str();
}

//----------------------------------------------------------------------------
int vtkWindBladeReader::GetPointArrayStatus(const char* name)
{
  return this->PointDataArraySelection->ArrayIsEnabled(name);
}

//----------------------------------------------------------------------------
void vtkWindBladeReader::SetPointArrayStatus(const char* name, int status)
{
  if (status)
    this->PointDataArraySelection->EnableArray(name);
  else
    this->PointDataArraySelection->DisableArray(name);
}

vtkUnstructuredGrid *vtkWindBladeReader::GetBladeOutput()
{
  if (this->GetNumberOfOutputPorts() < 2)
    {
    return NULL;
    }
  return vtkUnstructuredGrid::SafeDownCast(
    this->GetExecutive()->GetOutputData(1));
}

//----------------------------------------------------------------------------
int vtkWindBladeReader::FillOutputPortInformation(int port,
                                                  vtkInformation* info)
{
  if(port == 0)
    {
    return this->Superclass::FillOutputPortInformation(port, info);
    }
  info->Set(vtkDataObject::DATA_TYPE_NAME(), "vtkUnstructuredGrid");
  return 1;
}