MedicalDemo2
VTKExamples/Cxx/Medical/MedicalDemo2
Code¶
MedicalDemo2.cxx
// Derived from VTK/Examples/Cxx/Medical2.cxx // This example reads a volume dataset, extracts two isosurfaces that // represent the skin and bone, and then displays them. // #include <vtkRenderer.h> #include <vtkRenderWindow.h> #include <vtkRenderWindowInteractor.h> #include <vtkMetaImageReader.h> #include <vtkPolyDataMapper.h> #include <vtkActor.h> #include <vtkProperty.h> #include <vtkOutlineFilter.h> #include <vtkCamera.h> #include <vtkPolyDataMapper.h> #include <vtkStripper.h> #include <vtkMarchingCubes.h> #include <vtkSmartPointer.h> int main (int argc, char *argv[]) { if (argc < 2) { cout << "Usage: " << argv[0] << " file.mhd" << endl; return EXIT_FAILURE; } // Create the renderer, the render window, and the interactor. The renderer // draws into the render window, the interactor enables mouse- and // keyboard-based interaction with the data within the render window. // vtkSmartPointer<vtkRenderer> aRenderer = vtkSmartPointer<vtkRenderer>::New(); vtkSmartPointer<vtkRenderWindow> renWin = vtkSmartPointer<vtkRenderWindow>::New(); renWin->AddRenderer(aRenderer); vtkSmartPointer<vtkRenderWindowInteractor> iren = vtkSmartPointer<vtkRenderWindowInteractor>::New(); iren->SetRenderWindow(renWin); // The following reader is used to read a series of 2D slices (images) // that compose the volume. The slice dimensions are set, and the // pixel spacing. The data Endianness must also be specified. The reader // usese the FilePrefix in combination with the slice number to construct // filenames using the format FilePrefix.%d. (In this case the FilePrefix // is the root name of the file: quarter.) vtkSmartPointer<vtkMetaImageReader> reader = vtkSmartPointer<vtkMetaImageReader>::New(); reader->SetFileName (argv[1]); // An isosurface, or contour value of 500 is known to correspond to the // skin of the patient. // The triangle stripper is used to create triangle strips from the // isosurface; these render much faster on many systems. vtkSmartPointer<vtkMarchingCubes> skinExtractor = vtkSmartPointer<vtkMarchingCubes>::New(); skinExtractor->SetInputConnection(reader->GetOutputPort()); skinExtractor->SetValue(0, 500); vtkSmartPointer<vtkStripper> skinStripper = vtkSmartPointer<vtkStripper>::New(); skinStripper->SetInputConnection(skinExtractor->GetOutputPort()); vtkSmartPointer<vtkPolyDataMapper> skinMapper = vtkSmartPointer<vtkPolyDataMapper>::New(); skinMapper->SetInputConnection(skinStripper->GetOutputPort()); skinMapper->ScalarVisibilityOff(); vtkSmartPointer<vtkActor> skin = vtkSmartPointer<vtkActor>::New(); skin->SetMapper(skinMapper); skin->GetProperty()->SetDiffuseColor(1, .49, .25); skin->GetProperty()->SetSpecular(.3); skin->GetProperty()->SetSpecularPower(20); skin->GetProperty()->SetOpacity(.5); // An isosurface, or contour value of 1150 is known to correspond to the // skin of the patient. // The triangle stripper is used to create triangle strips from the // isosurface; these render much faster on may systems. vtkSmartPointer<vtkMarchingCubes> boneExtractor = vtkSmartPointer<vtkMarchingCubes>::New(); boneExtractor->SetInputConnection(reader->GetOutputPort()); boneExtractor->SetValue(0, 1150); vtkSmartPointer<vtkStripper> boneStripper = vtkSmartPointer<vtkStripper>::New(); boneStripper->SetInputConnection(boneExtractor->GetOutputPort()); vtkSmartPointer<vtkPolyDataMapper> boneMapper = vtkSmartPointer<vtkPolyDataMapper>::New(); boneMapper->SetInputConnection(boneStripper->GetOutputPort()); boneMapper->ScalarVisibilityOff(); vtkSmartPointer<vtkActor> bone = vtkSmartPointer<vtkActor>::New(); bone->SetMapper(boneMapper); bone->GetProperty()->SetDiffuseColor(1, 1, .9412); // An outline provides context around the data. // vtkSmartPointer<vtkOutlineFilter> outlineData = vtkSmartPointer<vtkOutlineFilter>::New(); outlineData->SetInputConnection(reader->GetOutputPort()); vtkSmartPointer<vtkPolyDataMapper> mapOutline = vtkSmartPointer<vtkPolyDataMapper>::New(); mapOutline->SetInputConnection(outlineData->GetOutputPort()); vtkSmartPointer<vtkActor> outline = vtkSmartPointer<vtkActor>::New(); outline->SetMapper(mapOutline); outline->GetProperty()->SetColor(0,0,0); // It is convenient to create an initial view of the data. The FocalPoint // and Position form a vector direction. Later on (ResetCamera() method) // this vector is used to position the camera to look at the data in // this direction. vtkSmartPointer<vtkCamera> aCamera = vtkSmartPointer<vtkCamera>::New(); aCamera->SetViewUp (0, 0, -1); aCamera->SetPosition (0, -1, 0); aCamera->SetFocalPoint (0, 0, 0); aCamera->ComputeViewPlaneNormal(); aCamera->Azimuth(30.0); aCamera->Elevation(30.0); // Actors are added to the renderer. An initial camera view is created. // The Dolly() method moves the camera towards the FocalPoint, // thereby enlarging the image. aRenderer->AddActor(outline); aRenderer->AddActor(skin); aRenderer->AddActor(bone); aRenderer->SetActiveCamera(aCamera); aRenderer->ResetCamera (); aCamera->Dolly(1.5); // Set a background color for the renderer and set the size of the // render window (expressed in pixels). aRenderer->SetBackground(.2, .3, .4); renWin->SetSize(640, 480); // Note that when camera movement occurs (as it does in the Dolly() // method), the clipping planes often need adjusting. Clipping planes // consist of two planes: near and far along the view direction. The // near plane clips out objects in front of the plane; the far plane // clips out objects behind the plane. This way only what is drawn // between the planes is actually rendered. aRenderer->ResetCameraClippingRange (); // Initialize the event loop and then start it. iren->Initialize(); iren->Start(); return EXIT_SUCCESS; }
CMakeLists.txt¶
cmake_minimum_required(VERSION 2.8) PROJECT(MedicalDemo2) find_package(VTK REQUIRED) include(${VTK_USE_FILE}) add_executable(MedicalDemo2 MACOSX_BUNDLE MedicalDemo2.cxx) target_link_libraries(MedicalDemo2 ${VTK_LIBRARIES})
Download and Build MedicalDemo2¶
Danger
The generation of tar files has not been ported to the new VTKExamples. Some tarballs may be missing or out-of-date.
Click here to download MedicalDemo2 and its CMakeLists.txt file. Once the tarball MedicalDemo2.tar has been downloaded and extracted,
cd MedicalDemo2/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./MedicalDemo2
WINDOWS USERS PLEASE NOTE: Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.