MedicalDemo3
VTKExamples/Cxx/Medical/MedicalDemo3
Code¶
MedicalDemo3.cxx
// Derived from VTK/Examples/Cxx/Medical3.cxx // This example reads a volume dataset, extracts two isosurfaces that // represent the skin and bone, creates three orthogonal planes // (sagittal, axial, coronal), and displays them. // #include <vtkRenderer.h> #include <vtkRenderWindow.h> #include <vtkRenderWindowInteractor.h> #include <vtkMetaImageReader.h> #include <vtkPolyDataMapper.h> #include <vtkActor.h> #include <vtkOutlineFilter.h> #include <vtkCamera.h> #include <vtkStripper.h> #include <vtkLookupTable.h> #include <vtkImageDataGeometryFilter.h> #include <vtkProperty.h> #include <vtkMarchingCubes.h> #include <vtkImageData.h> #include <vtkImageMapToColors.h> #include <vtkImageActor.h> #include <vtkSmartPointer.h> #include <vtkImageMapper3D.h> int main (int argc, char *argv[]) { if (argc < 2) { cout << "Usage: " << argv[0] << " file.mhd" << endl; return EXIT_FAILURE; } // Create the renderer, the render window, and the interactor. The // renderer draws into the render window, the interactor enables // mouse- and keyboard-based interaction with the data within the // render window. // vtkSmartPointer<vtkRenderer> aRenderer = vtkSmartPointer<vtkRenderer>::New(); vtkSmartPointer<vtkRenderWindow> renWin = vtkSmartPointer<vtkRenderWindow>::New(); renWin->AddRenderer(aRenderer); vtkSmartPointer<vtkRenderWindowInteractor> iren = vtkSmartPointer<vtkRenderWindowInteractor>::New(); iren->SetRenderWindow(renWin); // Set a background color for the renderer and set the size of the // render window (expressed in pixels). aRenderer->SetBackground(.2, .3, .4); renWin->SetSize(640, 480); // The following reader is used to read a series of 2D slices (images) // that compose the volume. The slice dimensions are set, and the // pixel spacing. The data Endianness must also be specified. The // reader uses the FilePrefix in combination with the slice number to // construct filenames using the format FilePrefix.%d. (In this case // the FilePrefix is the root name of the file: quarter.) vtkSmartPointer<vtkMetaImageReader> reader = vtkSmartPointer<vtkMetaImageReader>::New(); reader->SetFileName (argv[1]); reader->Update(); // An isosurface, or contour value of 500 is known to correspond to // the skin of the patient. // The triangle stripper is used to create triangle // strips from the isosurface; these render much faster on may // systems. vtkSmartPointer<vtkMarchingCubes> skinExtractor = vtkSmartPointer<vtkMarchingCubes>::New(); skinExtractor->SetInputConnection( reader->GetOutputPort()); skinExtractor->SetValue(0, 500); skinExtractor->Update(); vtkSmartPointer<vtkStripper> skinStripper = vtkSmartPointer<vtkStripper>::New(); skinStripper->SetInputConnection(skinExtractor->GetOutputPort()); skinStripper->Update(); vtkSmartPointer<vtkPolyDataMapper> skinMapper = vtkSmartPointer<vtkPolyDataMapper>::New(); skinMapper->SetInputConnection(skinStripper->GetOutputPort()); skinMapper->ScalarVisibilityOff(); vtkSmartPointer<vtkActor> skin = vtkSmartPointer<vtkActor>::New(); skin->SetMapper(skinMapper); skin->GetProperty()->SetDiffuseColor(1, .49, .25); skin->GetProperty()->SetSpecular(.3); skin->GetProperty()->SetSpecularPower(20); // An isosurface, or contour value of 1150 is known to correspond to // the skin of the patient. // The triangle stripper is used to create triangle // strips from the isosurface; these render much faster on may // systems. vtkSmartPointer<vtkMarchingCubes> boneExtractor = vtkSmartPointer<vtkMarchingCubes>::New(); boneExtractor->SetInputConnection(reader->GetOutputPort()); boneExtractor->SetValue(0, 1150); vtkSmartPointer<vtkStripper> boneStripper = vtkSmartPointer<vtkStripper>::New(); boneStripper->SetInputConnection(boneExtractor->GetOutputPort()); vtkSmartPointer<vtkPolyDataMapper> boneMapper = vtkSmartPointer<vtkPolyDataMapper>::New(); boneMapper->SetInputConnection(boneStripper->GetOutputPort()); boneMapper->ScalarVisibilityOff(); vtkSmartPointer<vtkActor> bone = vtkSmartPointer<vtkActor>::New(); bone->SetMapper(boneMapper); bone->GetProperty()->SetDiffuseColor(1, 1, .9412); // An outline provides context around the data. // vtkSmartPointer<vtkOutlineFilter> outlineData = vtkSmartPointer<vtkOutlineFilter>::New(); outlineData->SetInputConnection(reader->GetOutputPort()); outlineData->Update(); vtkSmartPointer<vtkPolyDataMapper> mapOutline = vtkSmartPointer<vtkPolyDataMapper>::New(); mapOutline->SetInputConnection(outlineData->GetOutputPort()); vtkSmartPointer<vtkActor> outline = vtkSmartPointer<vtkActor>::New(); outline->SetMapper(mapOutline); outline->GetProperty()->SetColor(0,0,0); // Now we are creating three orthogonal planes passing through the // volume. Each plane uses a different texture map and therefore has // different coloration. // Start by creating a black/white lookup table. vtkSmartPointer<vtkLookupTable> bwLut = vtkSmartPointer<vtkLookupTable>::New(); bwLut->SetTableRange (0, 2000); bwLut->SetSaturationRange (0, 0); bwLut->SetHueRange (0, 0); bwLut->SetValueRange (0, 1); bwLut->Build(); //effective built // Now create a lookup table that consists of the full hue circle // (from HSV). vtkSmartPointer<vtkLookupTable> hueLut = vtkSmartPointer<vtkLookupTable>::New(); hueLut->SetTableRange (0, 2000); hueLut->SetHueRange (0, 1); hueLut->SetSaturationRange (1, 1); hueLut->SetValueRange (1, 1); hueLut->Build(); //effective built // Finally, create a lookup table with a single hue but having a range // in the saturation of the hue. vtkSmartPointer<vtkLookupTable> satLut = vtkSmartPointer<vtkLookupTable>::New(); satLut->SetTableRange (0, 2000); satLut->SetHueRange (.6, .6); satLut->SetSaturationRange (0, 1); satLut->SetValueRange (1, 1); satLut->Build(); //effective built // Create the first of the three planes. The filter vtkImageMapToColors // maps the data through the corresponding lookup table created above. The // vtkImageActor is a type of vtkProp and conveniently displays an image on // a single quadrilateral plane. It does this using texture mapping and as // a result is quite fast. (Note: the input image has to be unsigned char // values, which the vtkImageMapToColors produces.) Note also that by // specifying the DisplayExtent, the pipeline requests data of this extent // and the vtkImageMapToColors only processes a slice of data. vtkSmartPointer<vtkImageMapToColors> sagittalColors = vtkSmartPointer<vtkImageMapToColors>::New(); sagittalColors->SetInputConnection(reader->GetOutputPort()); sagittalColors->SetLookupTable(bwLut); sagittalColors->Update(); vtkSmartPointer<vtkImageActor> sagittal = vtkSmartPointer<vtkImageActor>::New(); sagittal->GetMapper()->SetInputConnection(sagittalColors->GetOutputPort()); sagittal->SetDisplayExtent(128, 128, 0,255, 0,92); // Create the second (axial) plane of the three planes. We use the // same approach as before except that the extent differs. vtkSmartPointer<vtkImageMapToColors> axialColors = vtkSmartPointer<vtkImageMapToColors>::New(); axialColors->SetInputConnection(reader->GetOutputPort()); axialColors->SetLookupTable(hueLut); axialColors->Update(); vtkSmartPointer<vtkImageActor> axial = vtkSmartPointer<vtkImageActor>::New(); axial->GetMapper()->SetInputConnection(axialColors->GetOutputPort()); axial->SetDisplayExtent(0,255, 0,255, 46,46); // Create the third (coronal) plane of the three planes. We use // the same approach as before except that the extent differs. vtkSmartPointer<vtkImageMapToColors> coronalColors = vtkSmartPointer<vtkImageMapToColors>::New(); coronalColors->SetInputConnection(reader->GetOutputPort()); coronalColors->SetLookupTable(satLut); coronalColors->Update(); vtkSmartPointer<vtkImageActor> coronal = vtkSmartPointer<vtkImageActor>::New(); coronal->GetMapper()->SetInputConnection(coronalColors->GetOutputPort()); coronal->SetDisplayExtent(0,255, 128,128, 0,92); // It is convenient to create an initial view of the data. The // FocalPoint and Position form a vector direction. Later on // (ResetCamera() method) this vector is used to position the camera // to look at the data in this direction. vtkSmartPointer<vtkCamera> aCamera = vtkSmartPointer<vtkCamera>::New(); aCamera->SetViewUp (0, 0, -1); aCamera->SetPosition (0, -1, 0); aCamera->SetFocalPoint (0, 0, 0); aCamera->ComputeViewPlaneNormal(); aCamera->Azimuth(30.0); aCamera->Elevation(30.0); // Actors are added to the renderer. aRenderer->AddActor(outline); aRenderer->AddActor(sagittal); aRenderer->AddActor(axial); aRenderer->AddActor(coronal); aRenderer->AddActor(skin); aRenderer->AddActor(bone); // Turn off bone for this example. bone->VisibilityOff(); // Set skin to semi-transparent. skin->GetProperty()->SetOpacity(0.5); // An initial camera view is created. The Dolly() method moves // the camera towards the FocalPoint, thereby enlarging the image. aRenderer->SetActiveCamera(aCamera); // Calling Render() directly on a vtkRenderer is strictly forbidden. // Only calling Render() on the vtkRenderWindow is a valid call. renWin->Render(); aRenderer->ResetCamera (); aCamera->Dolly(1.5); // Note that when camera movement occurs (as it does in the Dolly() // method), the clipping planes often need adjusting. Clipping planes // consist of two planes: near and far along the view direction. The // near plane clips out objects in front of the plane; the far plane // clips out objects behind the plane. This way only what is drawn // between the planes is actually rendered. aRenderer->ResetCameraClippingRange (); // interact with data iren->Initialize(); iren->Start(); return EXIT_SUCCESS; }
CMakeLists.txt¶
cmake_minimum_required(VERSION 2.8) PROJECT(MedicalDemo3) find_package(VTK REQUIRED) include(${VTK_USE_FILE}) add_executable(MedicalDemo3 MACOSX_BUNDLE MedicalDemo3.cxx) target_link_libraries(MedicalDemo3 ${VTK_LIBRARIES})
Download and Build MedicalDemo3¶
Danger
The generation of tar files has not been ported to the new VTKExamples. Some tarballs may be missing or out-of-date.
Click here to download MedicalDemo3 and its CMakeLists.txt file. Once the tarball MedicalDemo3.tar has been downloaded and extracted,
cd MedicalDemo3/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./MedicalDemo3
WINDOWS USERS PLEASE NOTE: Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.