MedicalDemo2
VTKExamples/Cxx/Medical/MedicalDemo2
Code
MedicalDemo2.cxx
// Derived from VTK/Examples/Cxx/Medical2.cxx
// This example reads a volume dataset, extracts two isosurfaces that
// represent the skin and bone, and then displays them.
//
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkMetaImageReader.h>
#include <vtkPolyDataMapper.h>
#include <vtkActor.h>
#include <vtkProperty.h>
#include <vtkOutlineFilter.h>
#include <vtkCamera.h>
#include <vtkPolyDataMapper.h>
#include <vtkStripper.h>
#include <vtkMarchingCubes.h>
#include <vtkSmartPointer.h>
int main (int argc, char *argv[])
{
if (argc < 2)
{
cout << "Usage: " << argv[0] << " file.mhd" << endl;
return EXIT_FAILURE;
}
// Create the renderer, the render window, and the interactor. The renderer
// draws into the render window, the interactor enables mouse- and
// keyboard-based interaction with the data within the render window.
//
vtkSmartPointer<vtkRenderer> aRenderer =
vtkSmartPointer<vtkRenderer>::New();
vtkSmartPointer<vtkRenderWindow> renWin =
vtkSmartPointer<vtkRenderWindow>::New();
renWin->AddRenderer(aRenderer);
vtkSmartPointer<vtkRenderWindowInteractor> iren =
vtkSmartPointer<vtkRenderWindowInteractor>::New();
iren->SetRenderWindow(renWin);
// The following reader is used to read a series of 2D slices (images)
// that compose the volume. The slice dimensions are set, and the
// pixel spacing. The data Endianness must also be specified. The reader
// usese the FilePrefix in combination with the slice number to construct
// filenames using the format FilePrefix.%d. (In this case the FilePrefix
// is the root name of the file: quarter.)
vtkSmartPointer<vtkMetaImageReader> reader =
vtkSmartPointer<vtkMetaImageReader>::New();
reader->SetFileName (argv[1]);
// An isosurface, or contour value of 500 is known to correspond to the
// skin of the patient.
// The triangle stripper is used to create triangle strips from the
// isosurface; these render much faster on many systems.
vtkSmartPointer<vtkMarchingCubes> skinExtractor =
vtkSmartPointer<vtkMarchingCubes>::New();
skinExtractor->SetInputConnection(reader->GetOutputPort());
skinExtractor->SetValue(0, 500);
vtkSmartPointer<vtkStripper> skinStripper =
vtkSmartPointer<vtkStripper>::New();
skinStripper->SetInputConnection(skinExtractor->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> skinMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
skinMapper->SetInputConnection(skinStripper->GetOutputPort());
skinMapper->ScalarVisibilityOff();
vtkSmartPointer<vtkActor> skin =
vtkSmartPointer<vtkActor>::New();
skin->SetMapper(skinMapper);
skin->GetProperty()->SetDiffuseColor(1, .49, .25);
skin->GetProperty()->SetSpecular(.3);
skin->GetProperty()->SetSpecularPower(20);
skin->GetProperty()->SetOpacity(.5);
// An isosurface, or contour value of 1150 is known to correspond to the
// skin of the patient.
// The triangle stripper is used to create triangle strips from the
// isosurface; these render much faster on may systems.
vtkSmartPointer<vtkMarchingCubes> boneExtractor =
vtkSmartPointer<vtkMarchingCubes>::New();
boneExtractor->SetInputConnection(reader->GetOutputPort());
boneExtractor->SetValue(0, 1150);
vtkSmartPointer<vtkStripper> boneStripper =
vtkSmartPointer<vtkStripper>::New();
boneStripper->SetInputConnection(boneExtractor->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> boneMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
boneMapper->SetInputConnection(boneStripper->GetOutputPort());
boneMapper->ScalarVisibilityOff();
vtkSmartPointer<vtkActor> bone =
vtkSmartPointer<vtkActor>::New();
bone->SetMapper(boneMapper);
bone->GetProperty()->SetDiffuseColor(1, 1, .9412);
// An outline provides context around the data.
//
vtkSmartPointer<vtkOutlineFilter> outlineData =
vtkSmartPointer<vtkOutlineFilter>::New();
outlineData->SetInputConnection(reader->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> mapOutline =
vtkSmartPointer<vtkPolyDataMapper>::New();
mapOutline->SetInputConnection(outlineData->GetOutputPort());
vtkSmartPointer<vtkActor> outline =
vtkSmartPointer<vtkActor>::New();
outline->SetMapper(mapOutline);
outline->GetProperty()->SetColor(0,0,0);
// It is convenient to create an initial view of the data. The FocalPoint
// and Position form a vector direction. Later on (ResetCamera() method)
// this vector is used to position the camera to look at the data in
// this direction.
vtkSmartPointer<vtkCamera> aCamera = vtkSmartPointer<vtkCamera>::New();
aCamera->SetViewUp (0, 0, -1);
aCamera->SetPosition (0, -1, 0);
aCamera->SetFocalPoint (0, 0, 0);
aCamera->ComputeViewPlaneNormal();
aCamera->Azimuth(30.0);
aCamera->Elevation(30.0);
// Actors are added to the renderer. An initial camera view is created.
// The Dolly() method moves the camera towards the FocalPoint,
// thereby enlarging the image.
aRenderer->AddActor(outline);
aRenderer->AddActor(skin);
aRenderer->AddActor(bone);
aRenderer->SetActiveCamera(aCamera);
aRenderer->ResetCamera ();
aCamera->Dolly(1.5);
// Set a background color for the renderer and set the size of the
// render window (expressed in pixels).
aRenderer->SetBackground(.2, .3, .4);
renWin->SetSize(640, 480);
// Note that when camera movement occurs (as it does in the Dolly()
// method), the clipping planes often need adjusting. Clipping planes
// consist of two planes: near and far along the view direction. The
// near plane clips out objects in front of the plane; the far plane
// clips out objects behind the plane. This way only what is drawn
// between the planes is actually rendered.
aRenderer->ResetCameraClippingRange ();
// Initialize the event loop and then start it.
iren->Initialize();
iren->Start();
return EXIT_SUCCESS;
}
CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
PROJECT(MedicalDemo2)
find_package(VTK REQUIRED)
include(${VTK_USE_FILE})
add_executable(MedicalDemo2 MACOSX_BUNDLE MedicalDemo2.cxx)
target_link_libraries(MedicalDemo2 ${VTK_LIBRARIES})
Download and Build MedicalDemo2
Click here to download MedicalDemo2 and its CMakeLists.txt file. Once the tarball MedicalDemo2.tar has been downloaded and extracted,
cd MedicalDemo2/build
If VTK is installed:
cmake ..
If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:
cmake -DVTK_DIR:PATH=/home/me/vtk_build ..
Build the project:
make
and run it:
./MedicalDemo2
WINDOWS USERS PLEASE NOTE: Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.