MD5.c 15.8 KB
Newer Older
1
2
/* Distributed under the OSI-approved BSD 3-Clause License.  See accompanying
   file Copyright.txt or https://cmake.org/licensing#kwsys for details.  */
3
4
5
6
7
8
#include "kwsysPrivate.h"
#include KWSYS_HEADER(MD5.h)

/* Work-around CMake dependency scanning limitation.  This must
   duplicate the above list of headers.  */
#if 0
9
#  include "MD5.h.in"
10
11
#endif

12
13
14
#include <stddef.h> /* size_t */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memcpy, strlen */
15
16
17
18
19
20

/* This MD5 implementation has been taken from a third party.  Slight
   modifications to the arrangement of the code have been made to put
   it in a single source file instead of a separate header and
   implementation file.  */

21
#if defined(__clang__) && !defined(__INTEL_COMPILER)
22
23
#  pragma clang diagnostic push
#  pragma clang diagnostic ignored "-Wcast-align"
24
25
#endif

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/*
  Copyright (C) 1999, 2000, 2002 Aladdin Enterprises.  All rights reserved.

  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  L. Peter Deutsch
  ghost@aladdin.com

 */
/*
  Independent implementation of MD5 (RFC 1321).

  This code implements the MD5 Algorithm defined in RFC 1321, whose
  text is available at
        http://www.ietf.org/rfc/rfc1321.txt
  The code is derived from the text of the RFC, including the test suite
  (section A.5) but excluding the rest of Appendix A.  It does not include
  any code or documentation that is identified in the RFC as being
  copyrighted.

  The original and principal author of md5.c is L. Peter Deutsch
  <ghost@aladdin.com>.  Other authors are noted in the change history
  that follows (in reverse chronological order):

  2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
        either statically or dynamically; added missing #include <string.h>
        in library.
  2002-03-11 lpd Corrected argument list for main(), and added int return
        type, in test program and T value program.
  2002-02-21 lpd Added missing #include <stdio.h> in test program.
  2000-07-03 lpd Patched to eliminate warnings about "constant is
        unsigned in ANSI C, signed in traditional"; made test program
        self-checking.
  1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
  1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
  1999-05-03 lpd Original version.
 */

/*
 * This package supports both compile-time and run-time determination of CPU
 * byte order.  If ARCH_IS_BIG_ENDIAN is defined as 0, the code will be
 * compiled to run only on little-endian CPUs; if ARCH_IS_BIG_ENDIAN is
 * defined as non-zero, the code will be compiled to run only on big-endian
 * CPUs; if ARCH_IS_BIG_ENDIAN is not defined, the code will be compiled to
 * run on either big- or little-endian CPUs, but will run slightly less
 * efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined.
 */

typedef unsigned char md5_byte_t; /* 8-bit byte */
89
typedef unsigned int md5_word_t;  /* 32-bit word */
90
91

/* Define the state of the MD5 Algorithm. */
92
93
94
95
96
typedef struct md5_state_s
{
  md5_word_t count[2]; /* message length in bits, lsw first */
  md5_word_t abcd[4];  /* digest buffer */
  md5_byte_t buf[64];  /* accumulate block */
97
98
} md5_state_t;

99
#undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
100
#ifdef ARCH_IS_BIG_ENDIAN
101
#  define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
102
#else
103
#  define BYTE_ORDER 0
104
105
106
107
108
#endif

#define T_MASK ((md5_word_t)~0)
#define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
#define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
109
#define T3 0x242070db
110
111
#define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
#define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
112
#define T6 0x4787c62a
113
114
#define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
#define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
115
#define T9 0x698098d8
116
117
118
#define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
#define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
#define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
119
#define T13 0x6b901122
120
121
#define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
#define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
122
#define T16 0x49b40821
123
124
#define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
#define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
125
#define T19 0x265e5a51
126
127
#define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
#define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
128
#define T22 0x02441453
129
130
#define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
#define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
131
#define T25 0x21e1cde6
132
133
#define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
#define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
134
#define T28 0x455a14ed
135
136
#define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
#define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
137
#define T31 0x676f02d9
138
139
140
#define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
#define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
#define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
141
#define T35 0x6d9d6122
142
143
#define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
#define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
144
#define T38 0x4bdecfa9
145
146
#define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
#define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
147
#define T41 0x289b7ec6
148
149
#define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
#define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
150
#define T44 0x04881d05
151
152
#define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
#define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
153
#define T47 0x1fa27cf8
154
155
#define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
#define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
156
#define T50 0x432aff97
157
158
#define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
#define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
159
#define T53 0x655b59c3
160
161
162
#define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
#define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
#define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
163
#define T57 0x6fa87e4f
164
165
#define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
#define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
166
#define T60 0x4e0811a1
167
168
#define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
#define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
169
#define T63 0x2ad7d2bb
170
171
#define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)

172
static void md5_process(md5_state_t* pms, const md5_byte_t* data /*[64]*/)
173
{
174
175
176
177
  md5_word_t a = pms->abcd[0];
  md5_word_t b = pms->abcd[1];
  md5_word_t c = pms->abcd[2];
  md5_word_t d = pms->abcd[3];
178
  md5_word_t t;
179
#if BYTE_ORDER > 0
180
181
  /* Define storage only for big-endian CPUs. */
  md5_word_t X[16];
182
#else
183
184
185
  /* Define storage for little-endian or both types of CPUs. */
  md5_word_t xbuf[16];
  const md5_word_t* X;
186
187
#endif

188
  {
189
#if BYTE_ORDER == 0
190
191
192
193
194
195
196
197
    /*
     * Determine dynamically whether this is a big-endian or
     * little-endian machine, since we can use a more efficient
     * algorithm on the latter.
     */
    static const int w = 1;

    if (*((const md5_byte_t*)&w)) /* dynamic little-endian */
198
#endif
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#if BYTE_ORDER <= 0 /* little-endian */
    {
      /*
       * On little-endian machines, we can process properly aligned
       * data without copying it.
       */
      if (!((data - (const md5_byte_t*)0) & 3)) {
        /* data are properly aligned */
        X = (const md5_word_t*)data;
      } else {
        /* not aligned */
        memcpy(xbuf, data, 64);
        X = xbuf;
      }
    }
214
215
#endif
#if BYTE_ORDER == 0
216
    else /* dynamic big-endian */
217
#endif
218
219
220
221
222
223
224
225
226
#if BYTE_ORDER >= 0 /* big-endian */
    {
      /*
       * On big-endian machines, we must arrange the bytes in the
       * right order.
       */
      const md5_byte_t* xp = data;
      int i;

227
#  if BYTE_ORDER == 0
228
      X = xbuf; /* (dynamic only) */
229
230
231
#  else
#    define xbuf X /* (static only) */
#  endif
232
233
234
      for (i = 0; i < 16; ++i, xp += 4)
        xbuf[i] =
          (md5_word_t)(xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24));
235
    }
236
237
#endif
  }
238
239
240

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))

241
242
243
/* Round 1. */
/* Let [abcd k s i] denote the operation
   a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
244
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
245
246
#define SET(a, b, c, d, k, s, Ti)                                             \
  t = a + F(b, c, d) + X[k] + (Ti);                                           \
247
  a = ROTATE_LEFT(t, s) + b
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  /* Do the following 16 operations. */
  SET(a, b, c, d, 0, 7, T1);
  SET(d, a, b, c, 1, 12, T2);
  SET(c, d, a, b, 2, 17, T3);
  SET(b, c, d, a, 3, 22, T4);
  SET(a, b, c, d, 4, 7, T5);
  SET(d, a, b, c, 5, 12, T6);
  SET(c, d, a, b, 6, 17, T7);
  SET(b, c, d, a, 7, 22, T8);
  SET(a, b, c, d, 8, 7, T9);
  SET(d, a, b, c, 9, 12, T10);
  SET(c, d, a, b, 10, 17, T11);
  SET(b, c, d, a, 11, 22, T12);
  SET(a, b, c, d, 12, 7, T13);
  SET(d, a, b, c, 13, 12, T14);
  SET(c, d, a, b, 14, 17, T15);
  SET(b, c, d, a, 15, 22, T16);
265
266
#undef SET

267
268
269
/* Round 2. */
/* Let [abcd k s i] denote the operation
     a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
270
#define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
271
272
#define SET(a, b, c, d, k, s, Ti)                                             \
  t = a + G(b, c, d) + X[k] + (Ti);                                           \
273
  a = ROTATE_LEFT(t, s) + b
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
  /* Do the following 16 operations. */
  SET(a, b, c, d, 1, 5, T17);
  SET(d, a, b, c, 6, 9, T18);
  SET(c, d, a, b, 11, 14, T19);
  SET(b, c, d, a, 0, 20, T20);
  SET(a, b, c, d, 5, 5, T21);
  SET(d, a, b, c, 10, 9, T22);
  SET(c, d, a, b, 15, 14, T23);
  SET(b, c, d, a, 4, 20, T24);
  SET(a, b, c, d, 9, 5, T25);
  SET(d, a, b, c, 14, 9, T26);
  SET(c, d, a, b, 3, 14, T27);
  SET(b, c, d, a, 8, 20, T28);
  SET(a, b, c, d, 13, 5, T29);
  SET(d, a, b, c, 2, 9, T30);
  SET(c, d, a, b, 7, 14, T31);
  SET(b, c, d, a, 12, 20, T32);
291
292
#undef SET

293
294
295
/* Round 3. */
/* Let [abcd k s t] denote the operation
     a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
296
#define H(x, y, z) ((x) ^ (y) ^ (z))
297
298
#define SET(a, b, c, d, k, s, Ti)                                             \
  t = a + H(b, c, d) + X[k] + (Ti);                                           \
299
  a = ROTATE_LEFT(t, s) + b
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
  /* Do the following 16 operations. */
  SET(a, b, c, d, 5, 4, T33);
  SET(d, a, b, c, 8, 11, T34);
  SET(c, d, a, b, 11, 16, T35);
  SET(b, c, d, a, 14, 23, T36);
  SET(a, b, c, d, 1, 4, T37);
  SET(d, a, b, c, 4, 11, T38);
  SET(c, d, a, b, 7, 16, T39);
  SET(b, c, d, a, 10, 23, T40);
  SET(a, b, c, d, 13, 4, T41);
  SET(d, a, b, c, 0, 11, T42);
  SET(c, d, a, b, 3, 16, T43);
  SET(b, c, d, a, 6, 23, T44);
  SET(a, b, c, d, 9, 4, T45);
  SET(d, a, b, c, 12, 11, T46);
  SET(c, d, a, b, 15, 16, T47);
  SET(b, c, d, a, 2, 23, T48);
317
318
#undef SET

319
320
321
/* Round 4. */
/* Let [abcd k s t] denote the operation
     a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
322
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
323
324
#define SET(a, b, c, d, k, s, Ti)                                             \
  t = a + I(b, c, d) + X[k] + (Ti);                                           \
325
  a = ROTATE_LEFT(t, s) + b
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  /* Do the following 16 operations. */
  SET(a, b, c, d, 0, 6, T49);
  SET(d, a, b, c, 7, 10, T50);
  SET(c, d, a, b, 14, 15, T51);
  SET(b, c, d, a, 5, 21, T52);
  SET(a, b, c, d, 12, 6, T53);
  SET(d, a, b, c, 3, 10, T54);
  SET(c, d, a, b, 10, 15, T55);
  SET(b, c, d, a, 1, 21, T56);
  SET(a, b, c, d, 8, 6, T57);
  SET(d, a, b, c, 15, 10, T58);
  SET(c, d, a, b, 6, 15, T59);
  SET(b, c, d, a, 13, 21, T60);
  SET(a, b, c, d, 4, 6, T61);
  SET(d, a, b, c, 11, 10, T62);
  SET(c, d, a, b, 2, 15, T63);
  SET(b, c, d, a, 9, 21, T64);
343
344
#undef SET

345
346
347
348
349
350
351
  /* Then perform the following additions. (That is increment each
     of the four registers by the value it had before this block
     was started.) */
  pms->abcd[0] += a;
  pms->abcd[1] += b;
  pms->abcd[2] += c;
  pms->abcd[3] += d;
352
353
354
}

/* Initialize the algorithm. */
355
static void md5_init(md5_state_t* pms)
356
{
357
358
359
360
361
  pms->count[0] = pms->count[1] = 0;
  pms->abcd[0] = 0x67452301;
  pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
  pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
  pms->abcd[3] = 0x10325476;
362
363
364
}

/* Append a string to the message. */
365
static void md5_append(md5_state_t* pms, const md5_byte_t* data, size_t nbytes)
366
{
367
368
369
370
  const md5_byte_t* p = data;
  size_t left = nbytes;
  size_t offset = (pms->count[0] >> 3) & 63;
  md5_word_t nbits = (md5_word_t)(nbytes << 3);
371

372
373
  if (nbytes <= 0)
    return;
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
  /* Update the message length. */
  pms->count[1] += (md5_word_t)(nbytes >> 29);
  pms->count[0] += nbits;
  if (pms->count[0] < nbits)
    pms->count[1]++;

  /* Process an initial partial block. */
  if (offset) {
    size_t copy = (offset + nbytes > 64 ? 64 - offset : nbytes);

    memcpy(pms->buf + offset, p, copy);
    if (offset + copy < 64)
      return;
    p += copy;
    left -= copy;
    md5_process(pms, pms->buf);
  }

  /* Process full blocks. */
  for (; left >= 64; p += 64, left -= 64)
    md5_process(pms, p);

  /* Process a final partial block. */
  if (left)
    memcpy(pms->buf, p, left);
400
401
402
}

/* Finish the message and return the digest. */
403
static void md5_finish(md5_state_t* pms, md5_byte_t digest[16])
404
{
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
  static const md5_byte_t pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  md5_byte_t data[8];
  int i;

  /* Save the length before padding. */
  for (i = 0; i < 8; ++i)
    data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
  /* Pad to 56 bytes mod 64. */
  md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
  /* Append the length. */
  md5_append(pms, data, 8);
  for (i = 0; i < 16; ++i)
    digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
422
423
}

424
#if defined(__clang__) && !defined(__INTEL_COMPILER)
425
#  pragma clang diagnostic pop
426
427
#endif

428
429
430
431
432
433
434
435
436
437
/* Wrap up the MD5 state in our opaque structure.  */
struct kwsysMD5_s
{
  md5_state_t md5_state;
};

kwsysMD5* kwsysMD5_New(void)
{
  /* Allocate a process control structure.  */
  kwsysMD5* md5 = (kwsysMD5*)malloc(sizeof(kwsysMD5));
438
  if (!md5) {
439
    return 0;
440
  }
441
442
443
444
445
446
  return md5;
}

void kwsysMD5_Delete(kwsysMD5* md5)
{
  /* Make sure we have an instance.  */
447
  if (!md5) {
448
    return;
449
  }
450
451
452
453
454
455
456
457
458
459
460
461

  /* Free memory.  */
  free(md5);
}

void kwsysMD5_Initialize(kwsysMD5* md5)
{
  md5_init(&md5->md5_state);
}

void kwsysMD5_Append(kwsysMD5* md5, unsigned char const* data, int length)
{
462
  size_t dlen;
463
  if (length < 0) {
464
    dlen = strlen((char const*)data);
465
  } else {
466
    dlen = (size_t)length;
467
  }
468
  md5_append(&md5->md5_state, (md5_byte_t const*)data, dlen);
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
}

void kwsysMD5_Finalize(kwsysMD5* md5, unsigned char digest[16])
{
  md5_finish(&md5->md5_state, (md5_byte_t*)digest);
}

void kwsysMD5_FinalizeHex(kwsysMD5* md5, char buffer[32])
{
  unsigned char digest[16];
  kwsysMD5_Finalize(md5, digest);
  kwsysMD5_DigestToHex(digest, buffer);
}

void kwsysMD5_DigestToHex(unsigned char const digest[16], char buffer[32])
{
  /* Map from 4-bit index to hexadecimal representation.  */
486
487
  static char const hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
                                '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
488
489
490
491

  /* Map each 4-bit block separately.  */
  char* out = buffer;
  int i;
492
  for (i = 0; i < 16; ++i) {
493
494
    *out++ = hex[digest[i] >> 4];
    *out++ = hex[digest[i] & 0xF];
495
  }
496
}