jdcoefct.c 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * jdcoefct.c
 *
 * This file was part of the Independent JPEG Group's software:
 * Copyright (C) 1994-1997, Thomas G. Lane.
 * libjpeg-turbo Modifications:
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
 * Copyright (C) 2010, 2015-2016, D. R. Commander.
 * Copyright (C) 2015, Google, Inc.
 * For conditions of distribution and use, see the accompanying README.ijg
 * file.
 *
 * This file contains the coefficient buffer controller for decompression.
 * This controller is the top level of the JPEG decompressor proper.
 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
 *
 * In buffered-image mode, this controller is the interface between
 * input-oriented processing and output-oriented processing.
 * Also, the input side (only) is used when reading a file for transcoding.
 */

#include "jinclude.h"
#include "jdcoefct.h"
#include "jpegcomp.h"


/* Forward declarations */
28 29
METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo,
                                  JSAMPIMAGE output_buf);
30
#ifdef D_MULTISCAN_FILES_SUPPORTED
31
METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
32 33
#endif
#ifdef BLOCK_SMOOTHING_SUPPORTED
34 35 36
LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo);
METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo,
                                      JSAMPIMAGE output_buf);
37 38 39 40 41 42 43 44
#endif


/*
 * Initialize for an input processing pass.
 */

METHODDEF(void)
45
start_input_pass(j_decompress_ptr cinfo)
46 47 48 49 50 51 52 53 54 55 56
{
  cinfo->input_iMCU_row = 0;
  start_iMCU_row(cinfo);
}


/*
 * Initialize for an output processing pass.
 */

METHODDEF(void)
57
start_output_pass(j_decompress_ptr cinfo)
58 59
{
#ifdef BLOCK_SMOOTHING_SUPPORTED
60
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

  /* If multipass, check to see whether to use block smoothing on this pass */
  if (coef->pub.coef_arrays != NULL) {
    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
      coef->pub.decompress_data = decompress_smooth_data;
    else
      coef->pub.decompress_data = decompress_data;
  }
#endif
  cinfo->output_iMCU_row = 0;
}


/*
 * Decompress and return some data in the single-pass case.
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
 * Input and output must run in lockstep since we have only a one-MCU buffer.
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
 *
 * NB: output_buf contains a plane for each component in image,
 * which we index according to the component's SOF position.
 */

METHODDEF(int)
85
decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
86
{
87
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  JDIMENSION MCU_col_num;       /* index of current MCU within row */
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  int blkn, ci, xindex, yindex, yoffset, useful_width;
  JSAMPARRAY output_ptr;
  JDIMENSION start_col, output_col;
  jpeg_component_info *compptr;
  inverse_DCT_method_ptr inverse_DCT;

  /* Loop to process as much as one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
         MCU_col_num++) {
      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
103 104 105
      jzero_far((void *)coef->MCU_buffer[0],
                (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK)));
      if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        /* Suspension forced; update state counters and exit */
        coef->MCU_vert_offset = yoffset;
        coef->MCU_ctr = MCU_col_num;
        return JPEG_SUSPENDED;
      }

      /* Only perform the IDCT on blocks that are contained within the desired
       * cropping region.
       */
      if (MCU_col_num >= cinfo->master->first_iMCU_col &&
          MCU_col_num <= cinfo->master->last_iMCU_col) {
        /* Determine where data should go in output_buf and do the IDCT thing.
         * We skip dummy blocks at the right and bottom edges (but blkn gets
         * incremented past them!).  Note the inner loop relies on having
         * allocated the MCU_buffer[] blocks sequentially.
         */
122
        blkn = 0;               /* index of current DCT block within MCU */
123 124 125
        for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
          compptr = cinfo->cur_comp_info[ci];
          /* Don't bother to IDCT an uninteresting component. */
126
          if (!compptr->component_needed) {
127 128 129 130
            blkn += compptr->MCU_blocks;
            continue;
          }
          inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
131 132
          useful_width = (MCU_col_num < last_MCU_col) ?
                         compptr->MCU_width : compptr->last_col_width;
133
          output_ptr = output_buf[compptr->component_index] +
134
                       yoffset * compptr->_DCT_scaled_size;
135
          start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
136
                      compptr->MCU_sample_width;
137 138
          for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
            if (cinfo->input_iMCU_row < last_iMCU_row ||
139
                yoffset + yindex < compptr->last_row_height) {
140 141 142
              output_col = start_col;
              for (xindex = 0; xindex < useful_width; xindex++) {
                (*inverse_DCT) (cinfo, compptr,
143
                                (JCOEFPTR)coef->MCU_buffer[blkn + xindex],
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
                                output_ptr, output_col);
                output_col += compptr->_DCT_scaled_size;
              }
            }
            blkn += compptr->MCU_width;
            output_ptr += compptr->_DCT_scaled_size;
          }
        }
      }
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->MCU_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  cinfo->output_iMCU_row++;
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    start_iMCU_row(cinfo);
    return JPEG_ROW_COMPLETED;
  }
  /* Completed the scan */
  (*cinfo->inputctl->finish_input_pass) (cinfo);
  return JPEG_SCAN_COMPLETED;
}


/*
 * Dummy consume-input routine for single-pass operation.
 */

METHODDEF(int)
174
dummy_consume_data(j_decompress_ptr cinfo)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
{
  return JPEG_SUSPENDED;        /* Always indicate nothing was done */
}


#ifdef D_MULTISCAN_FILES_SUPPORTED

/*
 * Consume input data and store it in the full-image coefficient buffer.
 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
 * ie, v_samp_factor block rows for each component in the scan.
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
 */

METHODDEF(int)
190
consume_data(j_decompress_ptr cinfo)
191
{
192
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
193 194 195 196 197 198 199 200 201 202 203
  JDIMENSION MCU_col_num;       /* index of current MCU within row */
  int blkn, ci, xindex, yindex, yoffset;
  JDIMENSION start_col;
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
  JBLOCKROW buffer_ptr;
  jpeg_component_info *compptr;

  /* Align the virtual buffers for the components used in this scan. */
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    buffer[ci] = (*cinfo->mem->access_virt_barray)
204
      ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
205
       cinfo->input_iMCU_row * compptr->v_samp_factor,
206
       (JDIMENSION)compptr->v_samp_factor, TRUE);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    /* Note: entropy decoder expects buffer to be zeroed,
     * but this is handled automatically by the memory manager
     * because we requested a pre-zeroed array.
     */
  }

  /* Loop to process one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
         MCU_col_num++) {
      /* Construct list of pointers to DCT blocks belonging to this MCU */
      blkn = 0;                 /* index of current DCT block within MCU */
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
        compptr = cinfo->cur_comp_info[ci];
        start_col = MCU_col_num * compptr->MCU_width;
        for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
224
          buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
225 226 227 228 229 230
          for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
            coef->MCU_buffer[blkn++] = buffer_ptr++;
          }
        }
      }
      /* Try to fetch the MCU. */
231
      if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        /* Suspension forced; update state counters and exit */
        coef->MCU_vert_offset = yoffset;
        coef->MCU_ctr = MCU_col_num;
        return JPEG_SUSPENDED;
      }
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->MCU_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    start_iMCU_row(cinfo);
    return JPEG_ROW_COMPLETED;
  }
  /* Completed the scan */
  (*cinfo->inputctl->finish_input_pass) (cinfo);
  return JPEG_SCAN_COMPLETED;
}


/*
 * Decompress and return some data in the multi-pass case.
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
 *
 * NB: output_buf contains a plane for each component in image.
 */

METHODDEF(int)
261
decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
262
{
263
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
264 265 266 267 268 269 270 271 272 273 274 275 276 277
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  JDIMENSION block_num;
  int ci, block_row, block_rows;
  JBLOCKARRAY buffer;
  JBLOCKROW buffer_ptr;
  JSAMPARRAY output_ptr;
  JDIMENSION output_col;
  jpeg_component_info *compptr;
  inverse_DCT_method_ptr inverse_DCT;

  /* Force some input to be done if we are getting ahead of the input. */
  while (cinfo->input_scan_number < cinfo->output_scan_number ||
         (cinfo->input_scan_number == cinfo->output_scan_number &&
          cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
278
    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
279 280 281 282 283 284 285
      return JPEG_SUSPENDED;
  }

  /* OK, output from the virtual arrays. */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Don't bother to IDCT an uninteresting component. */
286
    if (!compptr->component_needed)
287 288 289
      continue;
    /* Align the virtual buffer for this component. */
    buffer = (*cinfo->mem->access_virt_barray)
290
      ((j_common_ptr)cinfo, coef->whole_image[ci],
291
       cinfo->output_iMCU_row * compptr->v_samp_factor,
292
       (JDIMENSION)compptr->v_samp_factor, FALSE);
293 294 295 296 297
    /* Count non-dummy DCT block rows in this iMCU row. */
    if (cinfo->output_iMCU_row < last_iMCU_row)
      block_rows = compptr->v_samp_factor;
    else {
      /* NB: can't use last_row_height here; it is input-side-dependent! */
298
      block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
299 300 301 302 303 304 305 306 307 308
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
    }
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
    output_ptr = output_buf[ci];
    /* Loop over all DCT blocks to be processed. */
    for (block_row = 0; block_row < block_rows; block_row++) {
      buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
      output_col = 0;
      for (block_num = cinfo->master->first_MCU_col[ci];
           block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
309 310
        (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr,
                        output_col);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        buffer_ptr++;
        output_col += compptr->_DCT_scaled_size;
      }
      output_ptr += compptr->_DCT_scaled_size;
    }
  }

  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    return JPEG_ROW_COMPLETED;
  return JPEG_SCAN_COMPLETED;
}

#endif /* D_MULTISCAN_FILES_SUPPORTED */


#ifdef BLOCK_SMOOTHING_SUPPORTED

/*
 * This code applies interblock smoothing as described by section K.8
 * of the JPEG standard: the first 5 AC coefficients are estimated from
 * the DC values of a DCT block and its 8 neighboring blocks.
 * We apply smoothing only for progressive JPEG decoding, and only if
 * the coefficients it can estimate are not yet known to full precision.
 */

/* Natural-order array positions of the first 5 zigzag-order coefficients */
#define Q01_POS  1
#define Q10_POS  8
#define Q20_POS  16
#define Q11_POS  9
#define Q02_POS  2

/*
 * Determine whether block smoothing is applicable and safe.
 * We also latch the current states of the coef_bits[] entries for the
 * AC coefficients; otherwise, if the input side of the decompressor
 * advances into a new scan, we might think the coefficients are known
 * more accurately than they really are.
 */

LOCAL(boolean)
352
smoothing_ok(j_decompress_ptr cinfo)
353
{
354
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
355 356 357 358 359 360 361
  boolean smoothing_useful = FALSE;
  int ci, coefi;
  jpeg_component_info *compptr;
  JQUANT_TBL *qtable;
  int *coef_bits;
  int *coef_bits_latch;

362
  if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)
363 364 365 366 367
    return FALSE;

  /* Allocate latch area if not already done */
  if (coef->coef_bits_latch == NULL)
    coef->coef_bits_latch = (int *)
368
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                                  cinfo->num_components *
                                  (SAVED_COEFS * sizeof(int)));
  coef_bits_latch = coef->coef_bits_latch;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* All components' quantization values must already be latched. */
    if ((qtable = compptr->quant_table) == NULL)
      return FALSE;
    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
    if (qtable->quantval[0] == 0 ||
        qtable->quantval[Q01_POS] == 0 ||
        qtable->quantval[Q10_POS] == 0 ||
        qtable->quantval[Q20_POS] == 0 ||
        qtable->quantval[Q11_POS] == 0 ||
        qtable->quantval[Q02_POS] == 0)
      return FALSE;
    /* DC values must be at least partly known for all components. */
    coef_bits = cinfo->coef_bits[ci];
    if (coef_bits[0] < 0)
      return FALSE;
    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
    for (coefi = 1; coefi <= 5; coefi++) {
      coef_bits_latch[coefi] = coef_bits[coefi];
      if (coef_bits[coefi] != 0)
        smoothing_useful = TRUE;
    }
    coef_bits_latch += SAVED_COEFS;
  }

  return smoothing_useful;
}


/*
 * Variant of decompress_data for use when doing block smoothing.
 */

METHODDEF(int)
408
decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
409
{
410
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
411 412 413 414 415 416 417 418 419 420 421 422 423
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  JDIMENSION block_num, last_block_column;
  int ci, block_row, block_rows, access_rows;
  JBLOCKARRAY buffer;
  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
  JSAMPARRAY output_ptr;
  JDIMENSION output_col;
  jpeg_component_info *compptr;
  inverse_DCT_method_ptr inverse_DCT;
  boolean first_row, last_row;
  JCOEF *workspace;
  int *coef_bits;
  JQUANT_TBL *quanttbl;
424 425
  JLONG Q00, Q01, Q02, Q10, Q11, Q20, num;
  int DC1, DC2, DC3, DC4, DC5, DC6, DC7, DC8, DC9;
426 427 428 429 430 431 432
  int Al, pred;

  /* Keep a local variable to avoid looking it up more than once */
  workspace = coef->workspace;

  /* Force some input to be done if we are getting ahead of the input. */
  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
433
         !cinfo->inputctl->eoi_reached) {
434 435 436 437 438 439 440
    if (cinfo->input_scan_number == cinfo->output_scan_number) {
      /* If input is working on current scan, we ordinarily want it to
       * have completed the current row.  But if input scan is DC,
       * we want it to keep one row ahead so that next block row's DC
       * values are up to date.
       */
      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
441
      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)
442 443
        break;
    }
444
    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
445 446 447 448 449 450 451
      return JPEG_SUSPENDED;
  }

  /* OK, output from the virtual arrays. */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Don't bother to IDCT an uninteresting component. */
452
    if (!compptr->component_needed)
453 454 455 456 457 458 459 460
      continue;
    /* Count non-dummy DCT block rows in this iMCU row. */
    if (cinfo->output_iMCU_row < last_iMCU_row) {
      block_rows = compptr->v_samp_factor;
      access_rows = block_rows * 2; /* this and next iMCU row */
      last_row = FALSE;
    } else {
      /* NB: can't use last_row_height here; it is input-side-dependent! */
461
      block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
462 463 464 465 466 467 468 469
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
      access_rows = block_rows; /* this iMCU row only */
      last_row = TRUE;
    }
    /* Align the virtual buffer for this component. */
    if (cinfo->output_iMCU_row > 0) {
      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
      buffer = (*cinfo->mem->access_virt_barray)
470
        ((j_common_ptr)cinfo, coef->whole_image[ci],
471
         (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
472
         (JDIMENSION)access_rows, FALSE);
473 474 475 476
      buffer += compptr->v_samp_factor; /* point to current iMCU row */
      first_row = FALSE;
    } else {
      buffer = (*cinfo->mem->access_virt_barray)
477 478
        ((j_common_ptr)cinfo, coef->whole_image[ci],
         (JDIMENSION)0, (JDIMENSION)access_rows, FALSE);
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
      first_row = TRUE;
    }
    /* Fetch component-dependent info */
    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
    quanttbl = compptr->quant_table;
    Q00 = quanttbl->quantval[0];
    Q01 = quanttbl->quantval[Q01_POS];
    Q10 = quanttbl->quantval[Q10_POS];
    Q20 = quanttbl->quantval[Q20_POS];
    Q11 = quanttbl->quantval[Q11_POS];
    Q02 = quanttbl->quantval[Q02_POS];
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
    output_ptr = output_buf[ci];
    /* Loop over all DCT blocks to be processed. */
    for (block_row = 0; block_row < block_rows; block_row++) {
      buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
      if (first_row && block_row == 0)
        prev_block_row = buffer_ptr;
      else
498 499
        prev_block_row = buffer[block_row - 1];
      if (last_row && block_row == block_rows - 1)
500 501
        next_block_row = buffer_ptr;
      else
502
        next_block_row = buffer[block_row + 1];
503 504 505
      /* We fetch the surrounding DC values using a sliding-register approach.
       * Initialize all nine here so as to do the right thing on narrow pics.
       */
506 507 508
      DC1 = DC2 = DC3 = (int)prev_block_row[0][0];
      DC4 = DC5 = DC6 = (int)buffer_ptr[0][0];
      DC7 = DC8 = DC9 = (int)next_block_row[0][0];
509 510 511 512 513
      output_col = 0;
      last_block_column = compptr->width_in_blocks - 1;
      for (block_num = cinfo->master->first_MCU_col[ci];
           block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
        /* Fetch current DCT block into workspace so we can modify it. */
514
        jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1);
515 516
        /* Update DC values */
        if (block_num < last_block_column) {
517 518 519
          DC3 = (int)prev_block_row[1][0];
          DC6 = (int)buffer_ptr[1][0];
          DC9 = (int)next_block_row[1][0];
520 521 522 523 524 525
        }
        /* Compute coefficient estimates per K.8.
         * An estimate is applied only if coefficient is still zero,
         * and is not known to be fully accurate.
         */
        /* AC01 */
526
        if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) {
527 528
          num = 36 * Q00 * (DC4 - DC6);
          if (num >= 0) {
529 530 531
            pred = (int)(((Q01 << 7) + num) / (Q01 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
532
          } else {
533 534 535
            pred = (int)(((Q01 << 7) - num) / (Q01 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
536 537
            pred = -pred;
          }
538
          workspace[1] = (JCOEF)pred;
539 540
        }
        /* AC10 */
541
        if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) {
542 543
          num = 36 * Q00 * (DC2 - DC8);
          if (num >= 0) {
544 545 546
            pred = (int)(((Q10 << 7) + num) / (Q10 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
547
          } else {
548 549 550
            pred = (int)(((Q10 << 7) - num) / (Q10 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
551 552
            pred = -pred;
          }
553
          workspace[8] = (JCOEF)pred;
554 555
        }
        /* AC20 */
556 557
        if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) {
          num = 9 * Q00 * (DC2 + DC8 - 2 * DC5);
558
          if (num >= 0) {
559 560 561
            pred = (int)(((Q20 << 7) + num) / (Q20 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
562
          } else {
563 564 565
            pred = (int)(((Q20 << 7) - num) / (Q20 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
566 567
            pred = -pred;
          }
568
          workspace[16] = (JCOEF)pred;
569 570
        }
        /* AC11 */
571
        if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) {
572 573
          num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
          if (num >= 0) {
574 575 576
            pred = (int)(((Q11 << 7) + num) / (Q11 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
577
          } else {
578 579 580
            pred = (int)(((Q11 << 7) - num) / (Q11 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
581 582
            pred = -pred;
          }
583
          workspace[9] = (JCOEF)pred;
584 585
        }
        /* AC02 */
586 587
        if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) {
          num = 9 * Q00 * (DC4 + DC6 - 2 * DC5);
588
          if (num >= 0) {
589 590 591
            pred = (int)(((Q02 << 7) + num) / (Q02 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
592
          } else {
593 594 595
            pred = (int)(((Q02 << 7) - num) / (Q02 << 8));
            if (Al > 0 && pred >= (1 << Al))
              pred = (1 << Al) - 1;
596 597
            pred = -pred;
          }
598
          workspace[2] = (JCOEF)pred;
599 600
        }
        /* OK, do the IDCT */
601 602
        (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr,
                        output_col);
603
        /* Advance for next column */
604 605 606
        DC1 = DC2;  DC2 = DC3;
        DC4 = DC5;  DC5 = DC6;
        DC7 = DC8;  DC8 = DC9;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
        buffer_ptr++, prev_block_row++, next_block_row++;
        output_col += compptr->_DCT_scaled_size;
      }
      output_ptr += compptr->_DCT_scaled_size;
    }
  }

  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    return JPEG_ROW_COMPLETED;
  return JPEG_SCAN_COMPLETED;
}

#endif /* BLOCK_SMOOTHING_SUPPORTED */


/*
 * Initialize coefficient buffer controller.
 */

GLOBAL(void)
627
jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
628 629 630 631
{
  my_coef_ptr coef;

  coef = (my_coef_ptr)
632
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
633
                                sizeof(my_coef_controller));
634
  cinfo->coef = (struct jpeg_d_coef_controller *)coef;
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
  coef->pub.start_input_pass = start_input_pass;
  coef->pub.start_output_pass = start_output_pass;
#ifdef BLOCK_SMOOTHING_SUPPORTED
  coef->coef_bits_latch = NULL;
#endif

  /* Create the coefficient buffer. */
  if (need_full_buffer) {
#ifdef D_MULTISCAN_FILES_SUPPORTED
    /* Allocate a full-image virtual array for each component, */
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
    /* Note we ask for a pre-zeroed array. */
    int ci, access_rows;
    jpeg_component_info *compptr;

    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
         ci++, compptr++) {
      access_rows = compptr->v_samp_factor;
#ifdef BLOCK_SMOOTHING_SUPPORTED
      /* If block smoothing could be used, need a bigger window */
      if (cinfo->progressive_mode)
        access_rows *= 3;
#endif
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
659 660 661 662 663 664
        ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE,
         (JDIMENSION)jround_up((long)compptr->width_in_blocks,
                               (long)compptr->h_samp_factor),
         (JDIMENSION)jround_up((long)compptr->height_in_blocks,
                               (long)compptr->v_samp_factor),
         (JDIMENSION)access_rows);
665 666 667 668 669 670 671 672 673 674 675 676 677
    }
    coef->pub.consume_data = consume_data;
    coef->pub.decompress_data = decompress_data;
    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
#else
    ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
  } else {
    /* We only need a single-MCU buffer. */
    JBLOCKROW buffer;
    int i;

    buffer = (JBLOCKROW)
678
      (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
679 680 681 682 683 684 685 686 687 688 689
                                  D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
      coef->MCU_buffer[i] = buffer + i;
    }
    coef->pub.consume_data = dummy_consume_data;
    coef->pub.decompress_data = decompress_onepass;
    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
  }

  /* Allocate the workspace buffer */
  coef->workspace = (JCOEF *)
690
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
691 692
                                sizeof(JCOEF) * DCTSIZE2);
}