Commit ee13bc40 by David E. DeMarle Committed by Kitware Robot

### Merge topic 'Fix2DReflectionFilter'

```368b9586 Fix reflection for 2D cells, with valid results on nodes after triangulation
Acked-by: Kitware Robot <kwrobot@kitware.com>
Merge-request: !4788```
parents fab90595 368b9586
 ... ... @@ -209,7 +209,32 @@ vtkIdType vtkReflectionFilter::ReflectNon3DCell( } for (int j = numCellPts-1; j >= 0; j--) { newCellPts[numCellPts-1-j] = cellPts->GetId(j); // Let's take the connectivity of origin cell as follows: 0, 1, 2, 3. // Here, left : origin, right : symmetrized // 3 - 2 || 2' - 3' // | | || | | // 0 - 1 || 1' - 0' // Previous result of connectivity of symmetric cell gave: 3', 2', 1', 0' // Topologically connectivity is good but triangulation of this symmetric // cell is not simply the symmetry of the triangulation of the origin cell // if triangulation occurs between index nodes 1 and 3: // original nodes 1 and 3, symmetric nodes 0' and 2'. // 3 - 2 || 2' - 3' // | \ | || | \ | // 0 - 1 || 1' - 0' // Visually this is wrong for values on the nodes, result is not symmetric // as it should be. Our modification provides the following connectivity // for the symmetric cell: 0', 3', 2', 1'. // The triangulation behaves as expected now, as illustrated below: // original nodes 1 and 3, symmetric nodes 1' and 3'. // 3 - 2 || 2' - 3' // | \ | || | / | // 0 - 1 || 1' - 0' // The new symmetry behaves correctly on higher order as well: // 4 - 3 \ || / 3' - 4' // | \ | 2 || 2' | / | // 0 - 1 / || \ 1' - 0' newCellPts[(numCellPts-j)%numCellPts] = cellPts->GetId(j); } } } // end switch ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!