diff --git a/Makefile b/Makefile
index 03be1436c3ea784417d0c3f1340555dd97b00014..28a0d17aca28226b41e9b2205ac91b8112a74490 100644
--- a/Makefile
+++ b/Makefile
@@ -3,7 +3,7 @@ CUDNN=0
 OPENCV=0
 DEBUG=0
 
-ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 
+ARCH= --gpu-architecture=compute_52 --gpu-code=compute_52 
 
 VPATH=./src/
 EXEC=darknet
diff --git a/cfg/darknet.cfg b/cfg/darknet.cfg
index ff0d33e4cbf46baf90e90839ed88cac0031c37cf..a96f4d0c5ddf6241da550723585b1c68962b5f30 100644
--- a/cfg/darknet.cfg
+++ b/cfg/darknet.cfg
@@ -14,7 +14,6 @@ power=4
 max_batches=500000
 
 [convolutional]
-batch_normalize=1
 filters=16
 size=3
 stride=1
@@ -26,7 +25,6 @@ size=2
 stride=2
 
 [convolutional]
-batch_normalize=1
 filters=32
 size=3
 stride=1
@@ -38,7 +36,6 @@ size=2
 stride=2
 
 [convolutional]
-batch_normalize=1
 filters=64
 size=3
 stride=1
@@ -50,7 +47,6 @@ size=2
 stride=2
 
 [convolutional]
-batch_normalize=1
 filters=128
 size=3
 stride=1
@@ -62,7 +58,6 @@ size=2
 stride=2
 
 [convolutional]
-batch_normalize=1
 filters=256
 size=3
 stride=1
@@ -74,7 +69,6 @@ size=2
 stride=2
 
 [convolutional]
-batch_normalize=1
 filters=512
 size=3
 stride=1
@@ -86,7 +80,6 @@ size=2
 stride=2
 
 [convolutional]
-batch_normalize=1
 filters=1024
 size=3
 stride=1
diff --git a/cfg/imagenet1k.dataset b/cfg/imagenet1k.dataset
new file mode 100644
index 0000000000000000000000000000000000000000..92d711d7f6c5466f3d8c61560a5f204488609923
--- /dev/null
+++ b/cfg/imagenet1k.dataset
@@ -0,0 +1,9 @@
+classes=1000
+labels = data/inet.labels.list
+names = data/shortnames.txt
+train = /data/imagenet/imagenet1k.train.list
+valid = /data/imagenet/imagenet1k.valid.list
+top=5
+test = /Users/pjreddie/Documents/sites/selfie/paths.list
+backup = /home/pjreddie/backup/
+
diff --git a/src/classifier.c b/src/classifier.c
index 7060c5e5acdb890bdadcab01e1b3892c736608a7..5104608f7f522f2d522ce8a36ebafd14f82d135a 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -38,7 +38,7 @@ list *read_data_cfg(char *filename)
     return options;
 }
 
-void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
+void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
 {
     data_seed = time(0);
     srand(time(0));
@@ -49,6 +49,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    if(clear) *net.seen = 0;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = net.batch;
 
@@ -96,14 +97,14 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
 
-/*
-        int u;
-        for(u = 0; u < net.batch; ++u){
-            image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
-            show_image(im, "loaded");
-            cvWaitKey(0);
-        }
-        */
+        /*
+           int u;
+           for(u = 0; u < net.batch; ++u){
+           image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
+           show_image(im, "loaded");
+           cvWaitKey(0);
+           }
+         */
 
         float loss = train_network(net, train);
         if(avg_loss == -1) avg_loss = loss;
@@ -116,7 +117,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
             sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
             save_weights(net, buff);
         }
-        if(*net.seen%100 == 0){
+        if(get_current_batch(net)%100 == 0){
             char buff[256];
             sprintf(buff, "%s/%s.backup",backup_directory,base);
             save_weights(net, buff);
@@ -378,8 +379,8 @@ void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
         //cvWaitKey(0);
         float *pred = network_predict(net, crop.data);
 
+        if(resized.data != im.data) free_image(resized);
         free_image(im);
-        free_image(resized);
         free_image(crop);
         top_k(pred, classes, topk, indexes);
 
@@ -441,7 +442,7 @@ void validate_classifier_multi(char *datacfg, char *filename, char *weightfile)
             flip_image(r);
             p = network_predict(net, r.data);
             axpy_cpu(classes, 1, p, 1, pred, 1);
-            free_image(r);
+            if(r.data != im.data) free_image(r);
         }
         free_image(im);
         top_k(pred, classes, topk, indexes);
@@ -501,6 +502,46 @@ void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *fi
     }
 }
 
+
+void label_classifier(char *datacfg, char *filename, char *weightfile)
+{
+    int i;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "names", "data/labels.list");
+    char *test_list = option_find_str(options, "test", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(test_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    for(i = 0; i < m; ++i){
+        image im = load_image_color(paths[i], 0, 0);
+        image resized = resize_min(im, net.w);
+        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
+        float *pred = network_predict(net, crop.data);
+
+        if(resized.data != im.data) free_image(resized);
+        free_image(im);
+        free_image(crop);
+        int ind = max_index(pred, classes);
+
+        printf("%s\n", labels[ind]);
+    }
+}
+
+
 void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer)
 {
     int curr = 0;
@@ -649,6 +690,7 @@ void run_classifier(int argc, char **argv)
     }
 
     int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int clear = find_arg(argc, argv, "-clear");
     char *data = argv[3];
     char *cfg = argv[4];
     char *weights = (argc > 5) ? argv[5] : 0;
@@ -656,9 +698,10 @@ void run_classifier(int argc, char **argv)
     char *layer_s = (argc > 7) ? argv[7]: 0;
     int layer = layer_s ? atoi(layer_s) : -1;
     if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
-    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
+    else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
     else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
+    else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
     else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
     else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 0cd51245fd53a55a4dd24eb26d4393ec07d467ea..cb50561979af2e93d3b8b444e15b8b579695498b 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -161,6 +161,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
             l.filter_updates_gpu);
 
     if(state.delta){
+        if(l.binary || l.xnor) swap_binary(&l);
         cudnnConvolutionBackwardData(cudnn_handle(),
                 &one,
                 l.filterDesc,
@@ -174,6 +175,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
                 &one,
                 l.dsrcTensorDesc,
                 state.delta);
+        if(l.binary || l.xnor) swap_binary(&l);
     }
 
 #else
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 303f1efe414cb968d8fd5d0d215861bc0e2e78ad..5575aacf2e37cdd61f17f78ac4e45120aac7c7b8 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -88,8 +88,8 @@ image get_convolutional_delta(convolutional_layer l)
     return float_to_image(w,h,c,l.delta);
 }
 
-#ifdef CUDNN
 size_t get_workspace_size(layer l){
+    #ifdef CUDNN
     size_t most = 0;
     size_t s = 0;
     cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
@@ -117,8 +117,10 @@ size_t get_workspace_size(layer l){
             &s);
     if (s > most) most = s;
     return most;
+    #else
+    return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
+    #endif
 }
-#endif
 
 convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
 {
@@ -154,8 +156,6 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
     l.outputs = l.out_h * l.out_w * l.out_c;
     l.inputs = l.w * l.h * l.c;
 
-    l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
-    l.workspace_size = out_h*out_w*size*size*c*sizeof(float);
     l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
     l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
 
@@ -255,10 +255,9 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
             CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
             0,
             &l.bf_algo);
-    l.workspace_size = get_workspace_size(l);
-
 #endif
 #endif
+    l.workspace_size = get_workspace_size(l);
     l.activation = activation;
 
     fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
@@ -315,8 +314,6 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
     l->outputs = l->out_h * l->out_w * l->out_c;
     l->inputs = l->w * l->h * l->c;
 
-    l->col_image = realloc(l->col_image,
-            out_h*out_w*l->size*l->size*l->c*sizeof(float));
     l->output = realloc(l->output,
             l->batch*out_h * out_w * l->n*sizeof(float));
     l->delta  = realloc(l->delta,
@@ -328,7 +325,43 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
 
     l->delta_gpu =     cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
     l->output_gpu =    cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
+    #ifdef CUDNN
+    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
+    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
+    cudnnSetFilter4dDescriptor(l->dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
+
+    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
+    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
+    cudnnSetFilter4dDescriptor(l->filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
+    int padding = l->pad ? l->size/2 : 0;
+    cudnnSetConvolution2dDescriptor(l->convDesc, padding, padding, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
+    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
+            l->srcTensorDesc,
+            l->filterDesc,
+            l->convDesc,
+            l->dstTensorDesc,
+            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
+            0,
+            &l->fw_algo);
+    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
+            l->filterDesc,
+            l->ddstTensorDesc,
+            l->convDesc,
+            l->dsrcTensorDesc,
+            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
+            0,
+            &l->bd_algo);
+    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
+            l->srcTensorDesc,
+            l->ddstTensorDesc,
+            l->convDesc,
+            l->dfilterDesc,
+            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
+            0,
+            &l->bf_algo);
+    #endif
 #endif
+    l->workspace_size = get_workspace_size(*l);
 }
 
 void add_bias(float *output, float *biases, int batch, int n, int size)
@@ -386,7 +419,7 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
         int n = out_h*out_w;
 
         char  *a = l.cfilters;
-        float *b = l.col_image;
+        float *b = state.workspace;
         float *c = l.output;
 
         for(i = 0; i < l.batch; ++i){
@@ -407,7 +440,7 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
     int n = out_h*out_w;
 
     float *a = l.filters;
-    float *b = l.col_image;
+    float *b = state.workspace;
     float *c = l.output;
 
     for(i = 0; i < l.batch; ++i){
@@ -439,7 +472,7 @@ void backward_convolutional_layer(convolutional_layer l, network_state state)
 
     for(i = 0; i < l.batch; ++i){
         float *a = l.delta + i*m*k;
-        float *b = l.col_image;
+        float *b = state.workspace;
         float *c = l.filter_updates;
 
         float *im = state.input+i*l.c*l.h*l.w;
@@ -451,11 +484,11 @@ void backward_convolutional_layer(convolutional_layer l, network_state state)
         if(state.delta){
             a = l.filters;
             b = l.delta + i*m*k;
-            c = l.col_image;
+            c = state.workspace;
 
             gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
 
-            col2im_cpu(l.col_image, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
+            col2im_cpu(state.workspace, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
         }
     }
 }
diff --git a/src/darknet.c b/src/darknet.c
index bf662d9ebf62ffd0617a94e53b447bc03c4fb84e..a9b2433294c017b5fcb41e17e13eb4ad48c9087c 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -270,6 +270,8 @@ int main(int argc, char **argv)
         run_dice(argc, argv);
     } else if (0 == strcmp(argv[1], "writing")){
         run_writing(argc, argv);
+    } else if (0 == strcmp(argv[1], "3d")){
+        composite_3d(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "test")){
         test_resize(argv[2]);
     } else if (0 == strcmp(argv[1], "captcha")){
diff --git a/src/data.c b/src/data.c
index fdc4a1db7b6f8cf76cf4835e4c17c4c83478377c..fcbdfc9b230513f3e920764dbdc078dd9ed8f583 100644
--- a/src/data.c
+++ b/src/data.c
@@ -271,7 +271,7 @@ void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int
     free(boxes);
 }
 
-void fill_truth_detection(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
+void fill_truth_detection(char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
 {
     char *labelpath = find_replace(path, "images", "labels");
     labelpath = find_replace(labelpath, "JPEGImages", "labels");
@@ -283,7 +283,7 @@ void fill_truth_detection(char *path, float *truth, int classes, int flip, float
     box_label *boxes = read_boxes(labelpath, &count);
     randomize_boxes(boxes, count);
     correct_boxes(boxes, count, dx, dy, sx, sy, flip);
-    if(count > 17) count = 17;
+    if(count > num_boxes) count = num_boxes;
     float x,y,w,h;
     int id;
     int i;
@@ -297,11 +297,11 @@ void fill_truth_detection(char *path, float *truth, int classes, int flip, float
 
         if (w < .01 || h < .01) continue;
 
-        truth[i*5] = id;
-        truth[i*5+2] = x;
-        truth[i*5+3] = y;
-        truth[i*5+4] = w;
-        truth[i*5+5] = h;
+        truth[i*5+0] = id;
+        truth[i*5+1] = x;
+        truth[i*5+2] = y;
+        truth[i*5+3] = w;
+        truth[i*5+4] = h;
     }
     free(boxes);
 }
@@ -601,7 +601,7 @@ data load_data_swag(char **paths, int n, int classes, float jitter)
     return d;
 }
 
-data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, int classes, float jitter)
+data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter)
 {
     char **random_paths = get_random_paths(paths, n, m);
     int i;
@@ -643,7 +643,7 @@ data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, in
         if(flip) flip_image(sized);
         d.X.vals[i] = sized.data;
 
-        fill_truth_detection(random_paths[i], d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy);
+        fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy);
 
         free_image(orig);
         free_image(cropped);
@@ -669,12 +669,12 @@ void *load_thread(void *ptr)
         *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
     } else if (a.type == STUDY_DATA){
         *a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
-    } else if (a.type == DETECTION_DATA){
-        *a.d = load_data_detection(a.n, a.num_boxes, a.paths, a.m, a.classes, a.w, a.h, a.background);
     } else if (a.type == WRITING_DATA){
         *a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
     } else if (a.type == REGION_DATA){
         *a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter);
+    } else if (a.type == DETECTION_DATA){
+        *a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter);
     } else if (a.type == SWAG_DATA){
         *a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter);
     } else if (a.type == COMPARE_DATA){
diff --git a/src/data.h b/src/data.h
index a7347a82ed95091caed9ed9456b2d9ffc14b186c..11363f19ffe6e98395dcd91e4fe13616718e9eb8 100644
--- a/src/data.h
+++ b/src/data.h
@@ -70,7 +70,7 @@ void print_letters(float *pred, int n);
 data load_data_captcha(char **paths, int n, int m, int k, int w, int h);
 data load_data_captcha_encode(char **paths, int n, int m, int w, int h);
 data load_data(char **paths, int n, int m, char **labels, int k, int w, int h);
-data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, int classes, float jitter);
+data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter);
 data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size);
 data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
 data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
diff --git a/src/image.c b/src/image.c
index aff5f642f30ebf4ec1aedb71c8822f2d52ea7dea..92833dfb77521ca170104e54ad400996afa162d0 100644
--- a/src/image.c
+++ b/src/image.c
@@ -491,6 +491,8 @@ void show_image_cv(image p, const char *name)
                     int r = j + dy;
                     int c = i + dx;
                     float val = 0;
+                    r = constrain_int(r, 0, im.h-1);
+                    c = constrain_int(c, 0, im.w-1);
                     if (r >= 0 && r < im.h && c >= 0 && c < im.w) {
                         val = get_pixel(im, c, r, k);
                     }
@@ -501,586 +503,653 @@ void show_image_cv(image p, const char *name)
         return cropped;
     }
 
-    image resize_min(image im, int min)
-    {
-        int w = im.w;
-        int h = im.h;
-        if(w < h){
-            h = (h * min) / w;
-            w = min;
-        } else {
-            w = (w * min) / h;
-            h = min;
+int best_3d_shift_r(image a, image b, int min, int max)
+{
+    if(min == max) return min;
+    int mid = floor((min + max) / 2.);
+    image c1 = crop_image(b, 0, mid, b.w, b.h);
+    image c2 = crop_image(b, 0, mid+1, b.w, b.h);
+    float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 10);
+    float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 10);
+    free_image(c1);
+    free_image(c2);
+    if(d1 < d2) return best_3d_shift_r(a, b, min, mid);
+    else return best_3d_shift_r(a, b, mid+1, max);
+}
+
+int best_3d_shift(image a, image b, int min, int max)
+{
+    int i;
+    int best = 0;
+    float best_distance = FLT_MAX;
+    for(i = min; i <= max; i += 2){
+        image c = crop_image(b, 0, i, b.w, b.h);
+        float d = dist_array(c.data, a.data, a.w*a.h*a.c, 100);
+        if(d < best_distance){
+            best_distance = d;
+            best = i;
         }
-        if(w == im.w && h == im.h) return im;
-        image resized = resize_image(im, w, h);
-        return resized;
+        printf("%d %f\n", i, d);
+        free_image(c);
     }
+    return best;
+}
 
-    image random_crop_image(image im, int low, int high, int size)
-    {
-        int r = rand_int(low, high);
-        image resized = resize_min(im, r);
-        int dx = rand_int(0, resized.w - size);
-        int dy = rand_int(0, resized.h - size);
-        image crop = crop_image(resized, dx, dy, size, size);
-
-        if(resized.data != im.data) free_image(resized);
-        return crop;
-    }
+void composite_3d(char *f1, char *f2, char *out)
+{
+    if(!out) out = "out";
+    image a = load_image(f1, 0,0,0);
+    image b = load_image(f2, 0,0,0);
+    int shift = best_3d_shift_r(a, b, -a.h/100, a.h/100);
 
-    float three_way_max(float a, float b, float c)
-    {
-        return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ;
-    }
+    image c1 = crop_image(b, 10, shift, b.w, b.h);
+    float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 100);
+    image c2 = crop_image(b, -10, shift, b.w, b.h);
+    float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100);
 
-    float three_way_min(float a, float b, float c)
-    {
-        return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ;
+    if(d2 < d1){
+        image swap = a;
+        a = b;
+        b = swap;
+        shift = -shift;
+        printf("swapped, %d\n", shift);
+    }
+    else{
+        printf("%d\n", shift);
     }
 
-    // http://www.cs.rit.edu/~ncs/color/t_convert.html
-    void rgb_to_hsv(image im)
-    {
-        assert(im.c == 3);
-        int i, j;
-        float r, g, b;
-        float h, s, v;
-        for(j = 0; j < im.h; ++j){
-            for(i = 0; i < im.w; ++i){
-                r = get_pixel(im, i , j, 0);
-                g = get_pixel(im, i , j, 1);
-                b = get_pixel(im, i , j, 2);
-                float max = three_way_max(r,g,b);
-                float min = three_way_min(r,g,b);
-                float delta = max - min;
-                v = max;
-                if(max == 0){
-                    s = 0;
-                    h = -1;
-                }else{
-                    s = delta/max;
-                    if(r == max){
-                        h = (g - b) / delta;
-                    } else if (g == max) {
-                        h = 2 + (b - r) / delta;
-                    } else {
-                        h = 4 + (r - g) / delta;
-                    }
-                    if (h < 0) h += 6;
-                }
-                set_pixel(im, i, j, 0, h);
-                set_pixel(im, i, j, 1, s);
-                set_pixel(im, i, j, 2, v);
-            }
-        }
+    image c = crop_image(b, 0, shift, a.w, a.h);
+    int i;
+    for(i = 0; i < c.w*c.h; ++i){
+        c.data[i] = a.data[i];
     }
+#ifdef OPENCV
+    save_image_jpg(c, out);
+#else
+    save_image(c, out);
+#endif
+}
 
-    void hsv_to_rgb(image im)
-    {
-        assert(im.c == 3);
-        int i, j;
-        float r, g, b;
-        float h, s, v;
-        float f, p, q, t;
-        for(j = 0; j < im.h; ++j){
-            for(i = 0; i < im.w; ++i){
-                h = get_pixel(im, i , j, 0);
-                s = get_pixel(im, i , j, 1);
-                v = get_pixel(im, i , j, 2);
-                if (s == 0) {
-                    r = g = b = v;
+image resize_min(image im, int min)
+{
+    int w = im.w;
+    int h = im.h;
+    if(w < h){
+        h = (h * min) / w;
+        w = min;
+    } else {
+        w = (w * min) / h;
+        h = min;
+    }
+    if(w == im.w && h == im.h) return im;
+    image resized = resize_image(im, w, h);
+    return resized;
+}
+
+image random_crop_image(image im, int low, int high, int size)
+{
+    int r = rand_int(low, high);
+    image resized = resize_min(im, r);
+    int dx = rand_int(0, resized.w - size);
+    int dy = rand_int(0, resized.h - size);
+    image crop = crop_image(resized, dx, dy, size, size);
+
+    if(resized.data != im.data) free_image(resized);
+    return crop;
+}
+
+float three_way_max(float a, float b, float c)
+{
+    return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ;
+}
+
+float three_way_min(float a, float b, float c)
+{
+    return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ;
+}
+
+// http://www.cs.rit.edu/~ncs/color/t_convert.html
+void rgb_to_hsv(image im)
+{
+    assert(im.c == 3);
+    int i, j;
+    float r, g, b;
+    float h, s, v;
+    for(j = 0; j < im.h; ++j){
+        for(i = 0; i < im.w; ++i){
+            r = get_pixel(im, i , j, 0);
+            g = get_pixel(im, i , j, 1);
+            b = get_pixel(im, i , j, 2);
+            float max = three_way_max(r,g,b);
+            float min = three_way_min(r,g,b);
+            float delta = max - min;
+            v = max;
+            if(max == 0){
+                s = 0;
+                h = -1;
+            }else{
+                s = delta/max;
+                if(r == max){
+                    h = (g - b) / delta;
+                } else if (g == max) {
+                    h = 2 + (b - r) / delta;
                 } else {
-                    int index = floor(h);
-                    f = h - index;
-                    p = v*(1-s);
-                    q = v*(1-s*f);
-                    t = v*(1-s*(1-f));
-                    if(index == 0){
-                        r = v; g = t; b = p;
-                    } else if(index == 1){
-                        r = q; g = v; b = p;
-                    } else if(index == 2){
-                        r = p; g = v; b = t;
-                    } else if(index == 3){
-                        r = p; g = q; b = v;
-                    } else if(index == 4){
-                        r = t; g = p; b = v;
-                    } else {
-                        r = v; g = p; b = q;
-                    }
+                    h = 4 + (r - g) / delta;
                 }
-                set_pixel(im, i, j, 0, r);
-                set_pixel(im, i, j, 1, g);
-                set_pixel(im, i, j, 2, b);
+                if (h < 0) h += 6;
             }
+            set_pixel(im, i, j, 0, h);
+            set_pixel(im, i, j, 1, s);
+            set_pixel(im, i, j, 2, v);
         }
     }
+}
 
-    image grayscale_image(image im)
-    {
-        assert(im.c == 3);
-        int i, j, k;
-        image gray = make_image(im.w, im.h, 1);
-        float scale[] = {0.587, 0.299, 0.114};
-        for(k = 0; k < im.c; ++k){
-            for(j = 0; j < im.h; ++j){
-                for(i = 0; i < im.w; ++i){
-                    gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k);
+void hsv_to_rgb(image im)
+{
+    assert(im.c == 3);
+    int i, j;
+    float r, g, b;
+    float h, s, v;
+    float f, p, q, t;
+    for(j = 0; j < im.h; ++j){
+        for(i = 0; i < im.w; ++i){
+            h = get_pixel(im, i , j, 0);
+            s = get_pixel(im, i , j, 1);
+            v = get_pixel(im, i , j, 2);
+            if (s == 0) {
+                r = g = b = v;
+            } else {
+                int index = floor(h);
+                f = h - index;
+                p = v*(1-s);
+                q = v*(1-s*f);
+                t = v*(1-s*(1-f));
+                if(index == 0){
+                    r = v; g = t; b = p;
+                } else if(index == 1){
+                    r = q; g = v; b = p;
+                } else if(index == 2){
+                    r = p; g = v; b = t;
+                } else if(index == 3){
+                    r = p; g = q; b = v;
+                } else if(index == 4){
+                    r = t; g = p; b = v;
+                } else {
+                    r = v; g = p; b = q;
                 }
             }
+            set_pixel(im, i, j, 0, r);
+            set_pixel(im, i, j, 1, g);
+            set_pixel(im, i, j, 2, b);
         }
-        return gray;
     }
+}
 
-    image threshold_image(image im, float thresh)
-    {
-        int i;
-        image t = make_image(im.w, im.h, im.c);
-        for(i = 0; i < im.w*im.h*im.c; ++i){
-            t.data[i] = im.data[i]>thresh ? 1 : 0;
+image grayscale_image(image im)
+{
+    assert(im.c == 3);
+    int i, j, k;
+    image gray = make_image(im.w, im.h, 1);
+    float scale[] = {0.587, 0.299, 0.114};
+    for(k = 0; k < im.c; ++k){
+        for(j = 0; j < im.h; ++j){
+            for(i = 0; i < im.w; ++i){
+                gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k);
+            }
         }
-        return t;
     }
+    return gray;
+}
 
-    image blend_image(image fore, image back, float alpha)
-    {
-        assert(fore.w == back.w && fore.h == back.h && fore.c == back.c);
-        image blend = make_image(fore.w, fore.h, fore.c);
-        int i, j, k;
-        for(k = 0; k < fore.c; ++k){
-            for(j = 0; j < fore.h; ++j){
-                for(i = 0; i < fore.w; ++i){
-                    float val = alpha * get_pixel(fore, i, j, k) + 
-                        (1 - alpha)* get_pixel(back, i, j, k);
-                    set_pixel(blend, i, j, k, val);
-                }
-            }
-        }
-        return blend;
+image threshold_image(image im, float thresh)
+{
+    int i;
+    image t = make_image(im.w, im.h, im.c);
+    for(i = 0; i < im.w*im.h*im.c; ++i){
+        t.data[i] = im.data[i]>thresh ? 1 : 0;
     }
+    return t;
+}
 
-    void scale_image_channel(image im, int c, float v)
-    {
-        int i, j;
-        for(j = 0; j < im.h; ++j){
-            for(i = 0; i < im.w; ++i){
-                float pix = get_pixel(im, i, j, c);
-                pix = pix*v;
-                set_pixel(im, i, j, c, pix);
+image blend_image(image fore, image back, float alpha)
+{
+    assert(fore.w == back.w && fore.h == back.h && fore.c == back.c);
+    image blend = make_image(fore.w, fore.h, fore.c);
+    int i, j, k;
+    for(k = 0; k < fore.c; ++k){
+        for(j = 0; j < fore.h; ++j){
+            for(i = 0; i < fore.w; ++i){
+                float val = alpha * get_pixel(fore, i, j, k) + 
+                    (1 - alpha)* get_pixel(back, i, j, k);
+                set_pixel(blend, i, j, k, val);
             }
         }
     }
+    return blend;
+}
 
-    image binarize_image(image im)
-    {
-        image c = copy_image(im);
-        int i;
-        for(i = 0; i < im.w * im.h * im.c; ++i){
-            if(c.data[i] > .5) c.data[i] = 1;
-            else c.data[i] = 0;
+void scale_image_channel(image im, int c, float v)
+{
+    int i, j;
+    for(j = 0; j < im.h; ++j){
+        for(i = 0; i < im.w; ++i){
+            float pix = get_pixel(im, i, j, c);
+            pix = pix*v;
+            set_pixel(im, i, j, c, pix);
         }
-        return c;
-    }
-
-    void saturate_image(image im, float sat)
-    {
-        rgb_to_hsv(im);
-        scale_image_channel(im, 1, sat);
-        hsv_to_rgb(im);
-        constrain_image(im);
     }
+}
 
-    void exposure_image(image im, float sat)
-    {
-        rgb_to_hsv(im);
-        scale_image_channel(im, 2, sat);
-        hsv_to_rgb(im);
-        constrain_image(im);
+image binarize_image(image im)
+{
+    image c = copy_image(im);
+    int i;
+    for(i = 0; i < im.w * im.h * im.c; ++i){
+        if(c.data[i] > .5) c.data[i] = 1;
+        else c.data[i] = 0;
     }
+    return c;
+}
 
-    void saturate_exposure_image(image im, float sat, float exposure)
-    {
-        rgb_to_hsv(im);
-        scale_image_channel(im, 1, sat);
-        scale_image_channel(im, 2, exposure);
-        hsv_to_rgb(im);
-        constrain_image(im);
-    }
+void saturate_image(image im, float sat)
+{
+    rgb_to_hsv(im);
+    scale_image_channel(im, 1, sat);
+    hsv_to_rgb(im);
+    constrain_image(im);
+}
 
-    /*
-       image saturate_image(image im, float sat)
-       {
-       image gray = grayscale_image(im);
-       image blend = blend_image(im, gray, sat);
-       free_image(gray);
-       constrain_image(blend);
-       return blend;
-       }
+void exposure_image(image im, float sat)
+{
+    rgb_to_hsv(im);
+    scale_image_channel(im, 2, sat);
+    hsv_to_rgb(im);
+    constrain_image(im);
+}
 
-       image brightness_image(image im, float b)
-       {
-       image bright = make_image(im.w, im.h, im.c);
-       return bright;
-       }
-     */
+void saturate_exposure_image(image im, float sat, float exposure)
+{
+    rgb_to_hsv(im);
+    scale_image_channel(im, 1, sat);
+    scale_image_channel(im, 2, exposure);
+    hsv_to_rgb(im);
+    constrain_image(im);
+}
 
-    float bilinear_interpolate(image im, float x, float y, int c)
-    {
-        int ix = (int) floorf(x);
-        int iy = (int) floorf(y);
+/*
+   image saturate_image(image im, float sat)
+   {
+   image gray = grayscale_image(im);
+   image blend = blend_image(im, gray, sat);
+   free_image(gray);
+   constrain_image(blend);
+   return blend;
+   }
+
+   image brightness_image(image im, float b)
+   {
+   image bright = make_image(im.w, im.h, im.c);
+   return bright;
+   }
+ */
+
+float bilinear_interpolate(image im, float x, float y, int c)
+{
+    int ix = (int) floorf(x);
+    int iy = (int) floorf(y);
 
-        float dx = x - ix;
-        float dy = y - iy;
+    float dx = x - ix;
+    float dy = y - iy;
 
-        float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + 
-            dy     * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + 
-            (1-dy) *   dx   * get_pixel_extend(im, ix+1, iy, c) +
-            dy     *   dx   * get_pixel_extend(im, ix+1, iy+1, c);
-        return val;
-    }
+    float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + 
+        dy     * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + 
+        (1-dy) *   dx   * get_pixel_extend(im, ix+1, iy, c) +
+        dy     *   dx   * get_pixel_extend(im, ix+1, iy+1, c);
+    return val;
+}
 
-    image resize_image(image im, int w, int h)
-    {
-        image resized = make_image(w, h, im.c);   
-        image part = make_image(w, im.h, im.c);
-        int r, c, k;
-        float w_scale = (float)(im.w - 1) / (w - 1);
-        float h_scale = (float)(im.h - 1) / (h - 1);
-        for(k = 0; k < im.c; ++k){
-            for(r = 0; r < im.h; ++r){
-                for(c = 0; c < w; ++c){
-                    float val = 0;
-                    if(c == w-1 || im.w == 1){
-                        val = get_pixel(im, im.w-1, r, k);
-                    } else {
-                        float sx = c*w_scale;
-                        int ix = (int) sx;
-                        float dx = sx - ix;
-                        val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k);
-                    }
-                    set_pixel(part, c, r, k, val);
+image resize_image(image im, int w, int h)
+{
+    image resized = make_image(w, h, im.c);   
+    image part = make_image(w, im.h, im.c);
+    int r, c, k;
+    float w_scale = (float)(im.w - 1) / (w - 1);
+    float h_scale = (float)(im.h - 1) / (h - 1);
+    for(k = 0; k < im.c; ++k){
+        for(r = 0; r < im.h; ++r){
+            for(c = 0; c < w; ++c){
+                float val = 0;
+                if(c == w-1 || im.w == 1){
+                    val = get_pixel(im, im.w-1, r, k);
+                } else {
+                    float sx = c*w_scale;
+                    int ix = (int) sx;
+                    float dx = sx - ix;
+                    val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k);
                 }
+                set_pixel(part, c, r, k, val);
             }
         }
-        for(k = 0; k < im.c; ++k){
-            for(r = 0; r < h; ++r){
-                float sy = r*h_scale;
-                int iy = (int) sy;
-                float dy = sy - iy;
-                for(c = 0; c < w; ++c){
-                    float val = (1-dy) * get_pixel(part, c, iy, k);
-                    set_pixel(resized, c, r, k, val);
-                }
-                if(r == h-1 || im.h == 1) continue;
-                for(c = 0; c < w; ++c){
-                    float val = dy * get_pixel(part, c, iy+1, k);
-                    add_pixel(resized, c, r, k, val);
-                }
+    }
+    for(k = 0; k < im.c; ++k){
+        for(r = 0; r < h; ++r){
+            float sy = r*h_scale;
+            int iy = (int) sy;
+            float dy = sy - iy;
+            for(c = 0; c < w; ++c){
+                float val = (1-dy) * get_pixel(part, c, iy, k);
+                set_pixel(resized, c, r, k, val);
+            }
+            if(r == h-1 || im.h == 1) continue;
+            for(c = 0; c < w; ++c){
+                float val = dy * get_pixel(part, c, iy+1, k);
+                add_pixel(resized, c, r, k, val);
             }
         }
-
-        free_image(part);
-        return resized;
     }
 
+    free_image(part);
+    return resized;
+}
+
 #include "cuda.h"
 
-    void test_resize(char *filename)
-    {
-        image im = load_image(filename, 0,0, 3);
-        float mag = mag_array(im.data, im.w*im.h*im.c);
-        printf("L2 Norm: %f\n", mag);
-        image gray = grayscale_image(im);
+void test_resize(char *filename)
+{
+    image im = load_image(filename, 0,0, 3);
+    float mag = mag_array(im.data, im.w*im.h*im.c);
+    printf("L2 Norm: %f\n", mag);
+    image gray = grayscale_image(im);
 
-        image sat2 = copy_image(im);
-        saturate_image(sat2, 2);
+    image sat2 = copy_image(im);
+    saturate_image(sat2, 2);
 
-        image sat5 = copy_image(im);
-        saturate_image(sat5, .5);
+    image sat5 = copy_image(im);
+    saturate_image(sat5, .5);
 
-        image exp2 = copy_image(im);
-        exposure_image(exp2, 2);
+    image exp2 = copy_image(im);
+    exposure_image(exp2, 2);
 
-        image exp5 = copy_image(im);
-        exposure_image(exp5, .5);
+    image exp5 = copy_image(im);
+    exposure_image(exp5, .5);
 
-        image bin = binarize_image(im);
+    image bin = binarize_image(im);
 
 #ifdef GPU
-        image r = resize_image(im, im.w, im.h);
-        image black = make_image(im.w*2 + 3, im.h*2 + 3, 9);
-        image black2 = make_image(im.w, im.h, 3);
-
-        float *r_gpu = cuda_make_array(r.data, r.w*r.h*r.c);
-        float *black_gpu = cuda_make_array(black.data, black.w*black.h*black.c);
-        float *black2_gpu = cuda_make_array(black2.data, black2.w*black2.h*black2.c);
-        shortcut_gpu(3, r.w, r.h, 1, r_gpu, black.w, black.h, 3, black_gpu);
-        //flip_image(r);
-        //shortcut_gpu(3, r.w, r.h, 1, r.data, black.w, black.h, 3, black.data);
-
-        shortcut_gpu(3, black.w, black.h, 3, black_gpu, black2.w, black2.h, 1, black2_gpu);
-        cuda_pull_array(black_gpu, black.data, black.w*black.h*black.c);
-        cuda_pull_array(black2_gpu, black2.data, black2.w*black2.h*black2.c);
-        show_image_layers(black, "Black");
-        show_image(black2, "Recreate");
+    image r = resize_image(im, im.w, im.h);
+    image black = make_image(im.w*2 + 3, im.h*2 + 3, 9);
+    image black2 = make_image(im.w, im.h, 3);
+
+    float *r_gpu = cuda_make_array(r.data, r.w*r.h*r.c);
+    float *black_gpu = cuda_make_array(black.data, black.w*black.h*black.c);
+    float *black2_gpu = cuda_make_array(black2.data, black2.w*black2.h*black2.c);
+    shortcut_gpu(3, r.w, r.h, 1, r_gpu, black.w, black.h, 3, black_gpu);
+    //flip_image(r);
+    //shortcut_gpu(3, r.w, r.h, 1, r.data, black.w, black.h, 3, black.data);
+
+    shortcut_gpu(3, black.w, black.h, 3, black_gpu, black2.w, black2.h, 1, black2_gpu);
+    cuda_pull_array(black_gpu, black.data, black.w*black.h*black.c);
+    cuda_pull_array(black2_gpu, black2.data, black2.w*black2.h*black2.c);
+    show_image_layers(black, "Black");
+    show_image(black2, "Recreate");
 #endif
 
-        show_image(im,   "Original");
-        show_image(bin,  "Binary");
-        show_image(gray, "Gray");
-        show_image(sat2, "Saturation-2");
-        show_image(sat5, "Saturation-.5");
-        show_image(exp2, "Exposure-2");
-        show_image(exp5, "Exposure-.5");
+    show_image(im,   "Original");
+    show_image(bin,  "Binary");
+    show_image(gray, "Gray");
+    show_image(sat2, "Saturation-2");
+    show_image(sat5, "Saturation-.5");
+    show_image(exp2, "Exposure-2");
+    show_image(exp5, "Exposure-.5");
 #ifdef OPENCV
-        cvWaitKey(0);
+    cvWaitKey(0);
 #endif
-    }
+}
 
 #ifdef OPENCV
-    image ipl_to_image(IplImage* src)
-    {
-        unsigned char *data = (unsigned char *)src->imageData;
-        int h = src->height;
-        int w = src->width;
-        int c = src->nChannels;
-        int step = src->widthStep;
-        image out = make_image(w, h, c);
-        int i, j, k, count=0;;
-
-        for(k= 0; k < c; ++k){
-            for(i = 0; i < h; ++i){
-                for(j = 0; j < w; ++j){
-                    out.data[count++] = data[i*step + j*c + k]/255.;
-                }
+image ipl_to_image(IplImage* src)
+{
+    unsigned char *data = (unsigned char *)src->imageData;
+    int h = src->height;
+    int w = src->width;
+    int c = src->nChannels;
+    int step = src->widthStep;
+    image out = make_image(w, h, c);
+    int i, j, k, count=0;;
+
+    for(k= 0; k < c; ++k){
+        for(i = 0; i < h; ++i){
+            for(j = 0; j < w; ++j){
+                out.data[count++] = data[i*step + j*c + k]/255.;
             }
         }
-        return out;
     }
+    return out;
+}
 
-    image load_image_cv(char *filename, int channels)
-    {
-        IplImage* src = 0;
-        int flag = -1;
-        if (channels == 0) flag = -1;
-        else if (channels == 1) flag = 0;
-        else if (channels == 3) flag = 1;
-        else {
-            fprintf(stderr, "OpenCV can't force load with %d channels\n", channels);
-        }
-
-        if( (src = cvLoadImage(filename, flag)) == 0 )
-        {
-            fprintf(stderr, "Cannot load image \"%s\"\n", filename);
-            char buff[256];
-            sprintf(buff, "echo %s >> bad.list", filename);
-            system(buff);
-            return make_image(10,10,3);
-            //exit(0);
-        }
-        image out = ipl_to_image(src);
-        cvReleaseImage(&src);
-        rgbgr_image(out);
-        return out;
+image load_image_cv(char *filename, int channels)
+{
+    IplImage* src = 0;
+    int flag = -1;
+    if (channels == 0) flag = -1;
+    else if (channels == 1) flag = 0;
+    else if (channels == 3) flag = 1;
+    else {
+        fprintf(stderr, "OpenCV can't force load with %d channels\n", channels);
     }
 
+    if( (src = cvLoadImage(filename, flag)) == 0 )
+    {
+        fprintf(stderr, "Cannot load image \"%s\"\n", filename);
+        char buff[256];
+        sprintf(buff, "echo %s >> bad.list", filename);
+        system(buff);
+        return make_image(10,10,3);
+        //exit(0);
+    }
+    image out = ipl_to_image(src);
+    cvReleaseImage(&src);
+    rgbgr_image(out);
+    return out;
+}
+
 #endif
 
 
-    image load_image_stb(char *filename, int channels)
-    {
-        int w, h, c;
-        unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
-        if (!data) {
-            fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason());
-            exit(0);
-        }
-        if(channels) c = channels;
-        int i,j,k;
-        image im = make_image(w, h, c);
-        for(k = 0; k < c; ++k){
-            for(j = 0; j < h; ++j){
-                for(i = 0; i < w; ++i){
-                    int dst_index = i + w*j + w*h*k;
-                    int src_index = k + c*i + c*w*j;
-                    im.data[dst_index] = (float)data[src_index]/255.;
-                }
+image load_image_stb(char *filename, int channels)
+{
+    int w, h, c;
+    unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
+    if (!data) {
+        fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason());
+        exit(0);
+    }
+    if(channels) c = channels;
+    int i,j,k;
+    image im = make_image(w, h, c);
+    for(k = 0; k < c; ++k){
+        for(j = 0; j < h; ++j){
+            for(i = 0; i < w; ++i){
+                int dst_index = i + w*j + w*h*k;
+                int src_index = k + c*i + c*w*j;
+                im.data[dst_index] = (float)data[src_index]/255.;
             }
         }
-        free(data);
-        return im;
     }
+    free(data);
+    return im;
+}
 
-    image load_image(char *filename, int w, int h, int c)
-    {
+image load_image(char *filename, int w, int h, int c)
+{
 #ifdef OPENCV
-        image out = load_image_cv(filename, c);
+    image out = load_image_cv(filename, c);
 #else
-        image out = load_image_stb(filename, c);
+    image out = load_image_stb(filename, c);
 #endif
 
-        if((h && w) && (h != out.h || w != out.w)){
-            image resized = resize_image(out, w, h);
-            free_image(out);
-            out = resized;
-        }
-        return out;
+    if((h && w) && (h != out.h || w != out.w)){
+        image resized = resize_image(out, w, h);
+        free_image(out);
+        out = resized;
     }
+    return out;
+}
 
-    image load_image_color(char *filename, int w, int h)
-    {
-        return load_image(filename, w, h, 3);
-    }
+image load_image_color(char *filename, int w, int h)
+{
+    return load_image(filename, w, h, 3);
+}
 
-    image get_image_layer(image m, int l)
-    {
-        image out = make_image(m.w, m.h, 1);
-        int i;
-        for(i = 0; i < m.h*m.w; ++i){
-            out.data[i] = m.data[i+l*m.h*m.w];
-        }
-        return out;
+image get_image_layer(image m, int l)
+{
+    image out = make_image(m.w, m.h, 1);
+    int i;
+    for(i = 0; i < m.h*m.w; ++i){
+        out.data[i] = m.data[i+l*m.h*m.w];
     }
+    return out;
+}
 
-    float get_pixel(image m, int x, int y, int c)
-    {
-        assert(x < m.w && y < m.h && c < m.c);
-        return m.data[c*m.h*m.w + y*m.w + x];
-    }
-    float get_pixel_extend(image m, int x, int y, int c)
-    {
-        if(x < 0 || x >= m.w || y < 0 || y >= m.h || c < 0 || c >= m.c) return 0;
-        return get_pixel(m, x, y, c);
-    }
-    void set_pixel(image m, int x, int y, int c, float val)
-    {
-        assert(x < m.w && y < m.h && c < m.c);
-        m.data[c*m.h*m.w + y*m.w + x] = val;
-    }
-    void add_pixel(image m, int x, int y, int c, float val)
-    {
-        assert(x < m.w && y < m.h && c < m.c);
-        m.data[c*m.h*m.w + y*m.w + x] += val;
-    }
+float get_pixel(image m, int x, int y, int c)
+{
+    assert(x < m.w && y < m.h && c < m.c);
+    return m.data[c*m.h*m.w + y*m.w + x];
+}
+float get_pixel_extend(image m, int x, int y, int c)
+{
+    if(x < 0 || x >= m.w || y < 0 || y >= m.h || c < 0 || c >= m.c) return 0;
+    return get_pixel(m, x, y, c);
+}
+void set_pixel(image m, int x, int y, int c, float val)
+{
+    assert(x < m.w && y < m.h && c < m.c);
+    m.data[c*m.h*m.w + y*m.w + x] = val;
+}
+void add_pixel(image m, int x, int y, int c, float val)
+{
+    assert(x < m.w && y < m.h && c < m.c);
+    m.data[c*m.h*m.w + y*m.w + x] += val;
+}
 
-    void print_image(image m)
-    {
-        int i, j, k;
-        for(i =0 ; i < m.c; ++i){
-            for(j =0 ; j < m.h; ++j){
-                for(k = 0; k < m.w; ++k){
-                    printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]);
-                    if(k > 30) break;
-                }
-                printf("\n");
-                if(j > 30) break;
+void print_image(image m)
+{
+    int i, j, k;
+    for(i =0 ; i < m.c; ++i){
+        for(j =0 ; j < m.h; ++j){
+            for(k = 0; k < m.w; ++k){
+                printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]);
+                if(k > 30) break;
             }
             printf("\n");
+            if(j > 30) break;
         }
         printf("\n");
     }
+    printf("\n");
+}
 
-    image collapse_images_vert(image *ims, int n)
-    {
-        int color = 1;
-        int border = 1;
-        int h,w,c;
-        w = ims[0].w;
-        h = (ims[0].h + border) * n - border;
-        c = ims[0].c;
-        if(c != 3 || !color){
-            w = (w+border)*c - border;
-            c = 1;
+image collapse_images_vert(image *ims, int n)
+{
+    int color = 1;
+    int border = 1;
+    int h,w,c;
+    w = ims[0].w;
+    h = (ims[0].h + border) * n - border;
+    c = ims[0].c;
+    if(c != 3 || !color){
+        w = (w+border)*c - border;
+        c = 1;
+    }
+
+    image filters = make_image(w, h, c);
+    int i,j;
+    for(i = 0; i < n; ++i){
+        int h_offset = i*(ims[0].h+border);
+        image copy = copy_image(ims[i]);
+        //normalize_image(copy);
+        if(c == 3 && color){
+            embed_image(copy, filters, 0, h_offset);
         }
-
-        image filters = make_image(w, h, c);
-        int i,j;
-        for(i = 0; i < n; ++i){
-            int h_offset = i*(ims[0].h+border);
-            image copy = copy_image(ims[i]);
-            //normalize_image(copy);
-            if(c == 3 && color){
-                embed_image(copy, filters, 0, h_offset);
-            }
-            else{
-                for(j = 0; j < copy.c; ++j){
-                    int w_offset = j*(ims[0].w+border);
-                    image layer = get_image_layer(copy, j);
-                    embed_image(layer, filters, w_offset, h_offset);
-                    free_image(layer);
-                }
+        else{
+            for(j = 0; j < copy.c; ++j){
+                int w_offset = j*(ims[0].w+border);
+                image layer = get_image_layer(copy, j);
+                embed_image(layer, filters, w_offset, h_offset);
+                free_image(layer);
             }
-            free_image(copy);
         }
-        return filters;
-    } 
+        free_image(copy);
+    }
+    return filters;
+} 
 
-    image collapse_images_horz(image *ims, int n)
-    {
-        int color = 1;
-        int border = 1;
-        int h,w,c;
-        int size = ims[0].h;
-        h = size;
-        w = (ims[0].w + border) * n - border;
-        c = ims[0].c;
-        if(c != 3 || !color){
-            h = (h+border)*c - border;
-            c = 1;
+image collapse_images_horz(image *ims, int n)
+{
+    int color = 1;
+    int border = 1;
+    int h,w,c;
+    int size = ims[0].h;
+    h = size;
+    w = (ims[0].w + border) * n - border;
+    c = ims[0].c;
+    if(c != 3 || !color){
+        h = (h+border)*c - border;
+        c = 1;
+    }
+
+    image filters = make_image(w, h, c);
+    int i,j;
+    for(i = 0; i < n; ++i){
+        int w_offset = i*(size+border);
+        image copy = copy_image(ims[i]);
+        //normalize_image(copy);
+        if(c == 3 && color){
+            embed_image(copy, filters, w_offset, 0);
         }
-
-        image filters = make_image(w, h, c);
-        int i,j;
-        for(i = 0; i < n; ++i){
-            int w_offset = i*(size+border);
-            image copy = copy_image(ims[i]);
-            //normalize_image(copy);
-            if(c == 3 && color){
-                embed_image(copy, filters, w_offset, 0);
-            }
-            else{
-                for(j = 0; j < copy.c; ++j){
-                    int h_offset = j*(size+border);
-                    image layer = get_image_layer(copy, j);
-                    embed_image(layer, filters, w_offset, h_offset);
-                    free_image(layer);
-                }
+        else{
+            for(j = 0; j < copy.c; ++j){
+                int h_offset = j*(size+border);
+                image layer = get_image_layer(copy, j);
+                embed_image(layer, filters, w_offset, h_offset);
+                free_image(layer);
             }
-            free_image(copy);
         }
-        return filters;
-    } 
-
-    void show_image_normalized(image im, const char *name)
-    {
-        image c = copy_image(im);
-        normalize_image(c);
-        show_image(c, name);
-        free_image(c);
+        free_image(copy);
     }
+    return filters;
+} 
 
-    void show_images(image *ims, int n, char *window)
-    {
-        image m = collapse_images_vert(ims, n);
-        /*
-           int w = 448;
-           int h = ((float)m.h/m.w) * 448;
-           if(h > 896){
-           h = 896;
-           w = ((float)m.w/m.h) * 896;
-           }
-           image sized = resize_image(m, w, h);
-         */
-        normalize_image(m);
-        image sized = resize_image(m, m.w, m.h);
-        save_image(sized, window);
-        show_image(sized, window);
-        free_image(sized);
-        free_image(m);
-    }
+void show_image_normalized(image im, const char *name)
+{
+    image c = copy_image(im);
+    normalize_image(c);
+    show_image(c, name);
+    free_image(c);
+}
 
-    void free_image(image m)
-    {
-        free(m.data);
-    }
+void show_images(image *ims, int n, char *window)
+{
+    image m = collapse_images_vert(ims, n);
+    /*
+       int w = 448;
+       int h = ((float)m.h/m.w) * 448;
+       if(h > 896){
+       h = 896;
+       w = ((float)m.w/m.h) * 896;
+       }
+       image sized = resize_image(m, w, h);
+     */
+    normalize_image(m);
+    image sized = resize_image(m, m.w, m.h);
+    save_image(sized, window);
+    show_image(sized, window);
+    free_image(sized);
+    free_image(m);
+}
+
+void free_image(image m)
+{
+    free(m.data);
+}
diff --git a/src/image.h b/src/image.h
index bf6ef9992770edd3c8bdd989ce96f293c26db539..ece7cb6a99590e51b333693a8b07dd91cf026c38 100644
--- a/src/image.h
+++ b/src/image.h
@@ -44,6 +44,7 @@ void saturate_exposure_image(image im, float sat, float exposure);
 void hsv_to_rgb(image im);
 void rgbgr_image(image im);
 void constrain_image(image im);
+void composite_3d(char *f1, char *f2, char *out);
 
 image grayscale_image(image im);
 image threshold_image(image im, float thresh);
diff --git a/src/layer.h b/src/layer.h
index c3697ce2de0c8d5a728f093fe3748b68e94c05c8..d53fe387cd406b4d0fa6b82fecbb5e405bbb4212 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -50,6 +50,7 @@ struct layer{
     int h,w,c;
     int out_h, out_w, out_c;
     int n;
+    int max_boxes;
     int groups;
     int size;
     int side;
diff --git a/src/network.c b/src/network.c
index 8f39f7b4b445e7a5d4f2655e75eee7682e90681c..88b70857cdf314fbf17fdd14063f0cab71348d37 100644
--- a/src/network.c
+++ b/src/network.c
@@ -137,6 +137,7 @@ network make_network(int n)
 
 void forward_network(network net, network_state state)
 {
+    state.workspace = net.workspace;
     int i;
     for(i = 0; i < net.n; ++i){
         state.index = i;
@@ -400,6 +401,7 @@ int resize_network(network *net, int w, int h)
     net->w = w;
     net->h = h;
     int inputs = 0;
+    size_t workspace_size = 0;
     //fprintf(stderr, "Resizing to %d x %d...", w, h);
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
@@ -419,12 +421,20 @@ int resize_network(network *net, int w, int h)
         }else{
             error("Cannot resize this type of layer");
         }
+        if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
         inputs = l.outputs;
         net->layers[i] = l;
         w = l.out_w;
         h = l.out_h;
         if(l.type == AVGPOOL) break;
     }
+#ifdef GPU
+        cuda_free(net->workspace);
+        net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+#else
+        free(net->workspace);
+        net->workspace = calloc(1, (workspace_size-1)/sizeof(float)+1);
+#endif
     //fprintf(stderr, " Done!\n");
     return 0;
 }
diff --git a/src/parser.c b/src/parser.c
index d5288aa92bc8d87232a50bfe708c0ebbead9ba58..d12b5c18312fa4c3125bad61f88ff81606bced0c 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -257,6 +257,7 @@ detection_layer parse_detection(list *options, size_params params)
     layer.softmax = option_find_int(options, "softmax", 0);
     layer.sqrt = option_find_int(options, "sqrt", 0);
 
+    layer.max_boxes = option_find_int_quiet(options, "max",30);
     layer.coord_scale = option_find_float(options, "coord_scale", 1);
     layer.forced = option_find_int(options, "forced", 0);
     layer.object_scale = option_find_float(options, "object_scale", 1);
@@ -600,8 +601,11 @@ network parse_network_cfg(char *filename)
     net.outputs = get_network_output_size(net);
     net.output = get_network_output(net);
     if(workspace_size){
+    //printf("%ld\n", workspace_size);
 #ifdef GPU
         net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+#else
+        net.workspace = calloc(1, workspace_size);
 #endif
     }
     return net;
diff --git a/src/rnn.c b/src/rnn.c
index c7c70a433c3407f18b89aca6a01629bf214adbf0..5e229baab6ce7f9d5833b0655797409ff98d7e78 100644
--- a/src/rnn.c
+++ b/src/rnn.c
@@ -280,6 +280,104 @@ void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float t
     printf("\n");
 }
 
+void test_tactic_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file)
+{
+    char **tokens = 0;
+    if(token_file){
+        size_t n;
+        tokens = read_tokens(token_file, &n);
+    }
+
+    srand(rseed);
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int i, j;
+    for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
+    int c = 0;
+    int len = strlen(seed);
+    float *input = calloc(inputs, sizeof(float));
+    float *out;
+
+    while((c = getc(stdin)) != EOF){
+        input[c] = 1;
+        out = network_predict(net, input);
+        input[c] = 0;
+    }
+    for(i = 0; i < num; ++i){
+        for(j = 0; j < inputs; ++j){
+            if (out[j] < .0001) out[j] = 0;
+        }
+        int next = sample_array(out, inputs);
+        if(c == '.' && next == '\n') break;
+        c = next;
+        print_symbol(c, tokens);
+
+        input[c] = 1;
+        out = network_predict(net, input);
+        input[c] = 0;
+    }
+    printf("\n");
+}
+
+void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed)
+{
+    char *base = basecfg(cfgfile);
+    fprintf(stderr, "%s\n", base);
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    int inputs = get_network_input_size(net);
+
+    int count = 0;
+    int words = 1;
+    int c;
+    int len = strlen(seed);
+    float *input = calloc(inputs, sizeof(float));
+    int i;
+    for(i = 0; i < len; ++i){
+        c = seed[i];
+        input[(int)c] = 1;
+        network_predict(net, input);
+        input[(int)c] = 0;
+    }
+    float sum = 0;
+    c = getc(stdin);
+    float log2 = log(2);
+    int in = 0;
+    while(c != EOF){
+        int next = getc(stdin);
+        if(next == EOF) break;
+        if(next < 0 || next >= 255) error("Out of range character");
+
+        input[c] = 1;
+        float *out = network_predict(net, input);
+        input[c] = 0;
+
+        if(c == '.' && next == '\n') in = 0;
+        if(!in) {
+            if(c == '>' && next == '>'){
+                in = 1;
+                ++words;
+            }
+            c = next;
+            continue;
+        }
+        ++count;
+        sum += log(out[next])/log2;
+        c = next;
+        printf("%d %d Perplexity: %4.4f    Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words));
+    }
+}
+
 void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
 {
     char *base = basecfg(cfgfile);
@@ -389,6 +487,8 @@ void run_char_rnn(int argc, char **argv)
     char *weights = (argc > 4) ? argv[4] : 0;
     if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized);
     else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed);
+    else if(0==strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed);
     else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed);
     else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens);
+    else if(0==strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, seed, temp, rseed, tokens);
 }
diff --git a/src/utils.c b/src/utils.c
index 1541e0520c72ed75cac9b35e948dd6b7add658f5..90af5cf76addad1dd6cac5c91286cd3ec4960f3f 100644
--- a/src/utils.c
+++ b/src/utils.c
@@ -424,6 +424,13 @@ float variance_array(float *a, int n)
     return variance;
 }
 
+int constrain_int(int a, int min, int max)
+{
+    if (a < min) return min;
+    if (a > max) return max;
+    return a;
+}
+
 float constrain(float min, float max, float a)
 {
     if (a < min) return min;
@@ -431,6 +438,14 @@ float constrain(float min, float max, float a)
     return a;
 }
 
+float dist_array(float *a, float *b, int n, int sub)
+{
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; i += sub) sum += pow(a[i]-b[i], 2);
+    return sqrt(sum);
+}
+
 float mse_array(float *a, int n)
 {
     int i;
diff --git a/src/utils.h b/src/utils.h
index 7e49818c7c788dce84cfa6a25e99104bbf46d8e7..cba7f6f265fb47d5d4c52f4d025b45d12ed51272 100644
--- a/src/utils.h
+++ b/src/utils.h
@@ -36,6 +36,7 @@ void scale_array(float *a, int n, float s);
 void translate_array(float *a, int n, float s);
 int max_index(float *a, int n);
 float constrain(float min, float max, float a);
+int constrain_int(int a, int min, int max);
 float mse_array(float *a, int n);
 float rand_normal();
 size_t rand_size_t();
@@ -46,6 +47,7 @@ float mean_array(float *a, int n);
 void mean_arrays(float **a, int n, int els, float *avg);
 float variance_array(float *a, int n);
 float mag_array(float *a, int n);
+float dist_array(float *a, float *b, int n, int sub);
 float **one_hot_encode(float *a, int n, int k);
 float sec(clock_t clocks);
 int find_int_arg(int argc, char **argv, char *arg, int def);