From c40cdeb4021fc1a638969563972f13c9f5e90d74 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 9 Oct 2015 12:50:43 -0700
Subject: [PATCH] lots of comparator stuff

---
 Makefile                  |   2 +-
 cfg/darknet.cfg           |   1 +
 src/coco.c                |   1 +
 src/compare.c             | 110 +++++++++++++++++++++++++++-----------
 src/convolutional_layer.c |   2 +-
 src/darknet.c             |   3 ++
 src/data.c                |   8 +--
 src/data.h                |   1 +
 src/dice.c                |   2 +-
 src/imagenet.c            |   2 +-
 src/layer.h               |   4 ++
 src/network.c             |   6 +--
 src/network.h             |   2 +-
 src/option_list.c         |  18 +++++++
 src/option_list.h         |   1 +
 src/parser.c              |  23 ++------
 src/region_layer.c        |  38 ++++++++++++-
 src/swag.c                |  99 +++++++++++++++++++++++++++++++++-
 18 files changed, 258 insertions(+), 65 deletions(-)

diff --git a/Makefile b/Makefile
index 22e89a1..26c4076 100644
--- a/Makefile
+++ b/Makefile
@@ -34,7 +34,7 @@ CFLAGS+= -DGPU
 LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
 endif
 
-OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o region_layer.o layer.o compare.o swag.o
+OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o region_layer.o layer.o compare.o swag.o classifier.o
 ifeq ($(GPU), 1) 
 OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
 endif
diff --git a/cfg/darknet.cfg b/cfg/darknet.cfg
index 0b3c46c..00e9c36 100644
--- a/cfg/darknet.cfg
+++ b/cfg/darknet.cfg
@@ -104,6 +104,7 @@ output=1000
 activation=leaky
 
 [softmax]
+groups=1
 
 [cost]
 type=sse
diff --git a/src/coco.c b/src/coco.c
index c016548..f6b135f 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -135,6 +135,7 @@ void get_probs(float *predictions, int total, int classes, int inc, float **prob
         }
     }
 }
+
 void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes)
 {
     int i,j;
diff --git a/src/compare.c b/src/compare.c
index 74c1cf5..76e0b60 100644
--- a/src/compare.c
+++ b/src/compare.c
@@ -150,17 +150,20 @@ typedef struct {
     network net;
     char *filename;
     int class;
+    int classes;
     float elo;
+    float *elos;
 } sortable_bbox;
 
 int total_compares = 0;
+int current_class = 0;
 
 int elo_comparator(const void*a, const void *b)
 {
     sortable_bbox box1 = *(sortable_bbox*)a;
     sortable_bbox box2 = *(sortable_bbox*)b;
-    if(box1.elo == box2.elo) return 0;
-    if(box1.elo >  box2.elo) return -1;
+    if(box1.elos[current_class] == box2.elos[current_class]) return 0;
+    if(box1.elos[current_class] >  box2.elos[current_class]) return -1;
     return 1;
 }
 
@@ -188,16 +191,38 @@ int bbox_comparator(const void *a, const void *b)
     return -1;
 }
 
-void bbox_fight(sortable_bbox *a, sortable_bbox *b)
+void bbox_update(sortable_bbox *a, sortable_bbox *b, int class, int result)
 {
     int k = 32;
-    int result = bbox_comparator(a,b);
-    float EA = 1./(1+pow(10, (b->elo - a->elo)/400.));
-    float EB = 1./(1+pow(10, (a->elo - b->elo)/400.));
-    float SA = 1.*(result > 0);
-    float SB = 1.*(result < 0);
-    a->elo = a->elo + k*(SA - EA);
-    b->elo = b->elo + k*(SB - EB);
+    float EA = 1./(1+pow(10, (b->elos[class] - a->elos[class])/400.));
+    float EB = 1./(1+pow(10, (a->elos[class] - b->elos[class])/400.));
+    float SA = result ? 1 : 0;
+    float SB = result ? 0 : 1;
+    a->elos[class] += k*(SA - EA);
+    b->elos[class] += k*(SB - EB);
+}
+
+void bbox_fight(network net, sortable_bbox *a, sortable_bbox *b, int classes, int class)
+{
+    image im1 = load_image_color(a->filename, net.w, net.h);
+    image im2 = load_image_color(b->filename, net.w, net.h);
+    float *X  = calloc(net.w*net.h*net.c, sizeof(float));
+    memcpy(X,                   im1.data, im1.w*im1.h*im1.c*sizeof(float));
+    memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float));
+    float *predictions = network_predict(net, X);
+    ++total_compares;
+
+    int i;
+    for(i = 0; i < classes; ++i){
+        if(class < 0 || class == i){
+            int result = predictions[i*2] > predictions[i*2+1];
+            bbox_update(a, b, i, result);
+        }
+    }
+    
+    free_image(im1);
+    free_image(im2);
+    free(X);
 }
 
 void SortMaster3000(char *filename, char *weightfile)
@@ -233,7 +258,8 @@ void SortMaster3000(char *filename, char *weightfile)
 
 void BattleRoyaleWithCheese(char *filename, char *weightfile)
 {
-    int i = 0;
+    int classes = 20;
+    int i,j;
     network net = parse_network_cfg(filename);
     if(weightfile){
         load_weights(&net, weightfile);
@@ -241,47 +267,67 @@ void BattleRoyaleWithCheese(char *filename, char *weightfile)
     srand(time(0));
     set_batch_network(&net, 1);
 
-    //list *plist = get_paths("data/compare.sort.list");
-    list *plist = get_paths("data/compare.cat.list");
+    list *plist = get_paths("data/compare.sort.list");
+    //list *plist = get_paths("data/compare.small.list");
+    //list *plist = get_paths("data/compare.cat.list");
     //list *plist = get_paths("data/compare.val.old");
     char **paths = (char **)list_to_array(plist);
     int N = plist->size;
+    int total = N;
     free_list(plist);
     sortable_bbox *boxes = calloc(N, sizeof(sortable_bbox));
     printf("Battling %d boxes...\n", N);
     for(i = 0; i < N; ++i){
         boxes[i].filename = paths[i];
         boxes[i].net = net;
-        boxes[i].class = 7;
-        boxes[i].elo = 1500;
+        boxes[i].classes = classes;
+        boxes[i].elos = calloc(classes, sizeof(float));;
+        for(j = 0; j < classes; ++j){
+            boxes[i].elos[j] = 1500;
+        }
     }
     int round;
     clock_t time=clock();
-    for(round = 1; round <= 500; ++round){
+    for(round = 1; round <= 4; ++round){
         clock_t round_time=clock();
         printf("Round: %d\n", round);
-        qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
-        sorta_shuffle(boxes, N, sizeof(sortable_bbox), 10);
         shuffle(boxes, N, sizeof(sortable_bbox));
         for(i = 0; i < N/2; ++i){
-            bbox_fight(boxes+i*2, boxes+i*2+1);
-        }
-        if(round >= 4 && 0){
-            qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
-            if(round == 4){
-                N = N/2;
-            }else{
-                N = (N*9/10)/2*2;
-            }
+            bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, -1);
         }
         printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N);
     }
-    qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
-    FILE *outfp = fopen("results/battle.log", "w");
-    for(i = 0; i < N; ++i){
-        fprintf(outfp, "%s %f\n", boxes[i].filename, boxes[i].elo);
+
+    int class;
+
+    for (class = 0; class < classes; ++class){
+
+        N = total;
+        current_class = class;
+        qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
+        N /= 2;
+
+        for(round = 1; round <= 20; ++round){
+            clock_t round_time=clock();
+            printf("Round: %d\n", round);
+
+            sorta_shuffle(boxes, N, sizeof(sortable_bbox), 10);
+            for(i = 0; i < N/2; ++i){
+                bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, class);
+            }
+            qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
+            N = (N*9/10)/2*2;
+
+            printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N);
+        }
+        char buff[256];
+        sprintf(buff, "results/battle_%d.log", class);
+        FILE *outfp = fopen(buff, "w");
+        for(i = 0; i < N; ++i){
+            fprintf(outfp, "%s %f\n", boxes[i].filename, boxes[i].elos[class]);
+        }
+        fclose(outfp);
     }
-    fclose(outfp);
     printf("Tournament in %d compares, %f secs\n", total_compares, sec(clock()-time));
 }
 
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 6e3f38b..f3609ea 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -61,7 +61,7 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
 
     l.biases = calloc(n, sizeof(float));
     l.bias_updates = calloc(n, sizeof(float));
-    //float scale = 1./sqrt(size*size*c);
+    // float scale = 1./sqrt(size*size*c);
     float scale = sqrt(2./(size*size*c));
     for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
     for(i = 0; i < n; ++i){
diff --git a/src/darknet.c b/src/darknet.c
index 9632f91..073156b 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -20,6 +20,7 @@ extern void run_captcha(int argc, char **argv);
 extern void run_nightmare(int argc, char **argv);
 extern void run_dice(int argc, char **argv);
 extern void run_compare(int argc, char **argv);
+extern void run_classifier(int argc, char **argv);
 
 void change_rate(char *filename, float scale, float add)
 {
@@ -183,6 +184,8 @@ int main(int argc, char **argv)
         run_swag(argc, argv);
     } else if (0 == strcmp(argv[1], "coco")){
         run_coco(argc, argv);
+    } else if (0 == strcmp(argv[1], "classifier")){
+        run_classifier(argc, argv);
     } else if (0 == strcmp(argv[1], "compare")){
         run_compare(argc, argv);
     } else if (0 == strcmp(argv[1], "dice")){
diff --git a/src/data.c b/src/data.c
index 2853d72..92c3d95 100644
--- a/src/data.c
+++ b/src/data.c
@@ -366,7 +366,7 @@ void free_data(data d)
     }
 }
 
-data load_data_region(int n, char **paths, int m, int w, int h, int size, int classes)
+data load_data_region(int n, char **paths, int m, int w, int h, int size, int classes, float jitter)
 {
     char **random_paths = get_random_paths(paths, n, m);
     int i;
@@ -385,8 +385,8 @@ data load_data_region(int n, char **paths, int m, int w, int h, int size, int cl
         int oh = orig.h;
         int ow = orig.w;
 
-        int dw = ow/10;
-        int dh = oh/10;
+        int dw = (ow*jitter);
+        int dh = (oh*jitter);
 
         int pleft  = (rand_uniform() * 2*dw - dw);
         int pright = (rand_uniform() * 2*dw - dw);
@@ -556,7 +556,7 @@ void *load_thread(void *ptr)
     } else if (a.type == WRITING_DATA){
         *a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
     } else if (a.type == REGION_DATA){
-        *a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes);
+        *a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter);
     } else if (a.type == COMPARE_DATA){
         *a.d = load_data_compare(a.n, a.paths, a.m, a.classes, a.w, a.h);
     } else if (a.type == IMAGE_DATA){
diff --git a/src/data.h b/src/data.h
index b91819f..0dacea2 100644
--- a/src/data.h
+++ b/src/data.h
@@ -44,6 +44,7 @@ typedef struct load_args{
     int num_boxes;
     int classes;
     int background;
+    float jitter;
     data *d;
     image *im;
     image *resized;
diff --git a/src/dice.c b/src/dice.c
index fdc535e..6f148b0 100644
--- a/src/dice.c
+++ b/src/dice.c
@@ -61,7 +61,7 @@ void validate_dice(char *filename, char *weightfile)
     free_list(plist);
 
     data val = load_data(paths, m, 0, labels, 6, net.w, net.h);
-    float *acc = network_accuracies(net, val);
+    float *acc = network_accuracies(net, val, 2);
     printf("Validation Accuracy: %f, %d images\n", acc[0], m);
     free_data(val);
 }
diff --git a/src/imagenet.c b/src/imagenet.c
index 567a8c4..1701a2a 100644
--- a/src/imagenet.c
+++ b/src/imagenet.c
@@ -133,7 +133,7 @@ void validate_imagenet(char *filename, char *weightfile)
         printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
 
         time=clock();
-        float *acc = network_accuracies(net, val);
+        float *acc = network_accuracies(net, val, 5);
         avg_acc += acc[0];
         avg_top5 += acc[1];
         printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
diff --git a/src/layer.h b/src/layer.h
index 808aba4..49f144d 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -29,6 +29,9 @@ typedef struct {
     COST_TYPE cost_type;
     int batch;
     int forced;
+    int object_logistic;
+    int class_logistic;
+    int coord_logistic;
     int inputs;
     int outputs;
     int truths;
@@ -45,6 +48,7 @@ typedef struct {
     int sqrt;
     int flip;
     float angle;
+    float jitter;
     float saturation;
     float exposure;
     int softmax;
diff --git a/src/network.c b/src/network.c
index 7f19318..063a1bb 100644
--- a/src/network.c
+++ b/src/network.c
@@ -540,12 +540,12 @@ float network_accuracy(network net, data d)
     return acc;
 }
 
-float *network_accuracies(network net, data d)
+float *network_accuracies(network net, data d, int n)
 {
     static float acc[2];
     matrix guess = network_predict_data(net, d);
-    acc[0] = matrix_topk_accuracy(d.y, guess,1);
-    acc[1] = matrix_topk_accuracy(d.y, guess,5);
+    acc[0] = matrix_topk_accuracy(d.y, guess, 1);
+    acc[1] = matrix_topk_accuracy(d.y, guess, n);
     free_matrix(guess);
     return acc;
 }
diff --git a/src/network.h b/src/network.h
index 5a39f08..78ad0fe 100644
--- a/src/network.h
+++ b/src/network.h
@@ -70,7 +70,7 @@ float train_network_sgd(network net, data d, int n);
 matrix network_predict_data(network net, data test);
 float *network_predict(network net, float *input);
 float network_accuracy(network net, data d);
-float *network_accuracies(network net, data d);
+float *network_accuracies(network net, data d, int n);
 float network_accuracy_multi(network net, data d, int n);
 void top_predictions(network net, int n, int *index);
 float *get_network_output(network net);
diff --git a/src/option_list.c b/src/option_list.c
index f5536e1..7d68ead 100644
--- a/src/option_list.c
+++ b/src/option_list.c
@@ -3,6 +3,24 @@
 #include <string.h>
 #include "option_list.h"
 
+int read_option(char *s, list *options)
+{
+    size_t i;
+    size_t len = strlen(s);
+    char *val = 0;
+    for(i = 0; i < len; ++i){
+        if(s[i] == '='){
+            s[i] = '\0';
+            val = s+i+1;
+            break;
+        }
+    }
+    if(i == len-1) return 0;
+    char *key = s;
+    option_insert(options, key, val);
+    return 1;
+}
+
 void option_insert(list *l, char *key, char *val)
 {
     kvp *p = malloc(sizeof(kvp));
diff --git a/src/option_list.h b/src/option_list.h
index 4441462..d0417aa 100644
--- a/src/option_list.h
+++ b/src/option_list.h
@@ -9,6 +9,7 @@ typedef struct{
 } kvp;
 
 
+int read_option(char *s, list *options);
 void option_insert(list *l, char *key, char *val);
 char *option_find(list *l, char *key);
 char *option_find_str(list *l, char *key, char *def);
diff --git a/src/parser.c b/src/parser.c
index 6daeb13..a3400d0 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -186,11 +186,16 @@ region_layer parse_region(list *options, size_params params)
     layer.softmax = option_find_int(options, "softmax", 0);
     layer.sqrt = option_find_int(options, "sqrt", 0);
 
+    layer.object_logistic = option_find_int(options, "object_logistic", 0);
+    layer.class_logistic = option_find_int(options, "class_logistic", 0);
+    layer.coord_logistic = option_find_int(options, "coord_logistic", 0);
+
     layer.coord_scale = option_find_float(options, "coord_scale", 1);
     layer.forced = option_find_int(options, "forced", 0);
     layer.object_scale = option_find_float(options, "object_scale", 1);
     layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
     layer.class_scale = option_find_float(options, "class_scale", 1);
+    layer.jitter = option_find_float(options, "jitter", .1);
     return layer;
 }
 
@@ -532,24 +537,6 @@ int is_route(section *s)
     return (strcmp(s->type, "[route]")==0);
 }
 
-int read_option(char *s, list *options)
-{
-    size_t i;
-    size_t len = strlen(s);
-    char *val = 0;
-    for(i = 0; i < len; ++i){
-        if(s[i] == '='){
-            s[i] = '\0';
-            val = s+i+1;
-            break;
-        }
-    }
-    if(i == len-1) return 0;
-    char *key = s;
-    option_insert(options, key, val);
-    return 1;
-}
-
 list *read_cfg(char *filename)
 {
     FILE *file = fopen(filename, "r");
diff --git a/src/region_layer.c b/src/region_layer.c
index 4d8c2a4..3239f87 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -57,6 +57,28 @@ void forward_region_layer(const region_layer l, network_state state)
             activate_array(l.output + index + offset, locations*l.n*(1+l.coords), LOGISTIC);
         }
     }
+    if (l.object_logistic) {
+        for(b = 0; b < l.batch; ++b){
+            int index = b*l.inputs;
+            int p_index = index + locations*l.classes;
+            activate_array(l.output + p_index, locations*l.n, LOGISTIC);
+        }
+    }
+
+    if (l.coord_logistic) {
+        for(b = 0; b < l.batch; ++b){
+            int index = b*l.inputs;
+            int coord_index = index + locations*(l.classes + l.n);
+            activate_array(l.output + coord_index, locations*l.n*l.coords, LOGISTIC);
+        }
+    }
+
+    if (l.class_logistic) {
+        for(b = 0; b < l.batch; ++b){
+            int class_index = b*l.inputs;
+            activate_array(l.output + class_index, locations*l.classes, LOGISTIC);
+        }
+    }
 
     if(state.train){
         float avg_iou = 0;
@@ -85,7 +107,6 @@ void forward_region_layer(const region_layer l, network_state state)
                 float best_rmse = 20;
 
                 if (!is_obj){
-                    //printf(".");
                     continue;
                 }
 
@@ -113,6 +134,7 @@ void forward_region_layer(const region_layer l, network_state state)
                     }
 
                     float iou  = box_iou(out, truth);
+                    //iou = 0;
                     float rmse = box_rmse(out, truth);
                     if(best_iou > 0 || iou > 0){
                         if(iou > best_iou){
@@ -175,6 +197,20 @@ void forward_region_layer(const region_layer l, network_state state)
                 gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords), 
                         LOGISTIC, l.delta + index + locations*l.classes);
             }
+            if (l.object_logistic) {
+                int p_index = index + locations*l.classes;
+                gradient_array(l.output + p_index, locations*l.n, LOGISTIC, l.delta + p_index);
+            }
+
+            if (l.class_logistic) {
+                int class_index = index;
+                gradient_array(l.output + class_index, locations*l.classes, LOGISTIC, l.delta + class_index);
+            }
+
+            if (l.coord_logistic) {
+                    int coord_index = index + locations*(l.classes + l.n);
+                gradient_array(l.output + coord_index, locations*l.n*l.coords, LOGISTIC, l.delta + coord_index);
+            }
             //printf("\n");
         }
         printf("Region Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
diff --git a/src/swag.c b/src/swag.c
index ec58f0d..8c9ce3c 100644
--- a/src/swag.c
+++ b/src/swag.c
@@ -73,6 +73,7 @@ void train_swag(char *cfgfile, char *weightfile)
 
     int side = l.side;
     int classes = l.classes;
+    float jitter = l.jitter;
 
     list *plist = get_paths(train_images);
     //int N = plist->size;
@@ -85,6 +86,7 @@ void train_swag(char *cfgfile, char *weightfile)
     args.n = imgs;
     args.m = plist->size;
     args.classes = classes;
+    args.jitter = jitter;
     args.num_boxes = side;
     args.d = &buffer;
     args.type = REGION_DATA;
@@ -127,7 +129,7 @@ void train_swag(char *cfgfile, char *weightfile)
     save_weights(net, buff);
 }
 
-void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes)
+void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
 {
     int i,j,n;
     //int per_cell = 5*num+classes;
@@ -148,6 +150,9 @@ void convert_swag_detections(float *predictions, int classes, int num, int squar
                 float prob = scale*predictions[class_index+j];
                 probs[index][j] = (prob > thresh) ? prob : 0;
             }
+            if(only_objectness){
+                probs[index][0] = scale;
+            }
         }
     }
 }
@@ -250,7 +255,7 @@ void validate_swag(char *cfgfile, char *weightfile)
             float *predictions = network_predict(net, X);
             int w = val[t].w;
             int h = val[t].h;
-            convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes);
+            convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
             if (nms) do_nms(boxes, probs, side*side*l.n, classes, iou_thresh);
             print_swag_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
             free(id);
@@ -261,6 +266,95 @@ void validate_swag(char *cfgfile, char *weightfile)
     fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
+void validate_swag_recall(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *base = "results/comp4_det_test_";
+    list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n-1];
+    int classes = l.classes;
+    int square = l.sqrt;
+    int side = l.side;
+
+    int j, k;
+    FILE **fps = calloc(classes, sizeof(FILE *));
+    for(j = 0; j < classes; ++j){
+        char buff[1024];
+        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
+        fps[j] = fopen(buff, "w");
+    }
+    box *boxes = calloc(side*side*l.n, sizeof(box));
+    float **probs = calloc(side*side*l.n, sizeof(float *));
+    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+    int m = plist->size;
+    int i=0;
+
+    float thresh = .001;
+    int nms = 0;
+    float iou_thresh = .5;
+    float nms_thresh = .5;
+
+    int total = 0;
+    int correct = 0;
+    int proposals = 0;
+    float avg_iou = 0;
+
+    for(i = 0; i < m; ++i){
+        char *path = paths[i];
+        image orig = load_image_color(path, 0, 0);
+        image sized = resize_image(orig, net.w, net.h);
+        char *id = basecfg(path);
+        float *predictions = network_predict(net, sized.data);
+        int w = orig.w;
+        int h = orig.h;
+        convert_swag_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
+        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
+
+        char *labelpath = find_replace(path, "images", "labels");
+        labelpath = find_replace(labelpath, "JPEGImages", "labels");
+        labelpath = find_replace(labelpath, ".jpg", ".txt");
+        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        for(k = 0; k < side*side*l.n; ++k){
+            if(probs[k][0] > thresh){
+                ++proposals;
+            }
+        }
+        for (j = 0; j < num_labels; ++j) {
+            ++total;
+            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+            float best_iou = 0;
+            for(k = 0; k < side*side*l.n; ++k){
+                float iou = box_iou(boxes[k], t);
+                if(probs[k][0] > thresh && iou > best_iou){
+                    best_iou = iou;
+                }
+            }
+            avg_iou += best_iou;
+            if(best_iou > iou_thresh){
+                ++correct;
+            }
+        }
+
+        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
+        free(id);
+        free_image(orig);
+        free_image(sized);
+    }
+}
+
 void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh)
 {
 
@@ -316,4 +410,5 @@ void run_swag(int argc, char **argv)
     if(0==strcmp(argv[2], "test")) test_swag(cfg, weights, filename, thresh);
     else if(0==strcmp(argv[2], "train")) train_swag(cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_swag(cfg, weights);
+    else if(0==strcmp(argv[2], "recall")) validate_swag_recall(cfg, weights);
 }
-- 
GitLab