From 845ab7579685b6702c92c1088ec11e71bde51f3c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 5 Aug 2016 15:27:07 -0700
Subject: [PATCH] some more stuff

---
 Makefile                  |   2 +-
 cfg/darknet.cfg           |  20 +-
 cfg/extraction.cfg        |  50 +++--
 src/blas.c                |  21 ++
 src/blas.h                |   2 +
 src/blas_kernels.cu       |  39 ++++
 src/classifier.c          |  55 ++++--
 src/convolutional_layer.c | 127 ++++++------
 src/darknet.c             |  27 ++-
 src/data.c                |  52 ++++-
 src/data.h                |   5 +-
 src/detector.c            | 398 ++++++++++++++++++++++++++++++++++++++
 src/image.c               |  57 +++---
 src/image.h               |   8 +-
 src/layer.h               |   2 +
 src/network.c             |  23 ++-
 src/network.h             |   2 +
 src/network_kernels.cu    |  59 +++++-
 src/parser.c              |  55 +++---
 src/region_layer.c        | 286 +++++++++++++++++++++++++++
 src/region_layer.h        |  18 ++
 src/reorg_layer.c         | 111 +++++++++++
 src/reorg_layer.h         |  20 ++
 src/super.c               | 132 +++++++++++++
 src/utils.c               |   5 +
 src/voxel.c               | 169 ++++++++++++++++
 26 files changed, 1589 insertions(+), 156 deletions(-)
 create mode 100644 src/detector.c
 create mode 100644 src/region_layer.c
 create mode 100644 src/region_layer.h
 create mode 100644 src/reorg_layer.c
 create mode 100644 src/reorg_layer.h
 create mode 100644 src/super.c
 create mode 100644 src/voxel.c

diff --git a/Makefile b/Makefile
index 3374dcc..6878eef 100644
--- a/Makefile
+++ b/Makefile
@@ -41,7 +41,7 @@ CFLAGS+= -DCUDNN
 LDFLAGS+= -lcudnn
 endif
 
-OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o
+OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o super.o voxel.o
 ifeq ($(GPU), 1) 
 LDFLAGS+= -lstdc++ 
 OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
diff --git a/cfg/darknet.cfg b/cfg/darknet.cfg
index a96f4d0..7c0d28a 100644
--- a/cfg/darknet.cfg
+++ b/cfg/darknet.cfg
@@ -11,9 +11,10 @@ max_crop=320
 learning_rate=0.1
 policy=poly
 power=4
-max_batches=500000
+max_batches=1600000
 
 [convolutional]
+batch_normalize=1
 filters=16
 size=3
 stride=1
@@ -25,6 +26,7 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=32
 size=3
 stride=1
@@ -36,6 +38,7 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=64
 size=3
 stride=1
@@ -47,6 +50,7 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=128
 size=3
 stride=1
@@ -58,6 +62,7 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=256
 size=3
 stride=1
@@ -69,6 +74,7 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=512
 size=3
 stride=1
@@ -80,18 +86,22 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=1024
 size=3
 stride=1
 pad=1
 activation=leaky
 
-[avgpool]
-
-[connected]
-output=1000
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
 activation=leaky
 
+[avgpool]
+
 [softmax]
 groups=1
 
diff --git a/cfg/extraction.cfg b/cfg/extraction.cfg
index f9668a5..94e1067 100644
--- a/cfg/extraction.cfg
+++ b/cfg/extraction.cfg
@@ -1,26 +1,20 @@
 [net]
 batch=128
 subdivisions=1
-height=256
-width=256
+height=224
+width=224
+max_crop=320
 channels=3
 momentum=0.9
 decay=0.0005
 
-learning_rate=0.5
+learning_rate=0.1
 policy=poly
-power=6
-max_batches=500000
-
-[crop]
-crop_height=224
-crop_width=224
-flip=1
-saturation=1
-exposure=1
-angle=0
+power=4
+max_batches=1600000
 
 [convolutional]
+batch_normalize=1
 filters=64
 size=7
 stride=2
@@ -32,6 +26,7 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=192
 size=3
 stride=1
@@ -43,6 +38,7 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=128
 size=1
 stride=1
@@ -50,6 +46,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=256
 size=3
 stride=1
@@ -57,6 +54,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=256
 size=1
 stride=1
@@ -64,6 +62,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=512
 size=3
 stride=1
@@ -75,6 +74,7 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=256
 size=1
 stride=1
@@ -82,6 +82,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=512
 size=3
 stride=1
@@ -89,6 +90,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=256
 size=1
 stride=1
@@ -96,6 +98,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=512
 size=3
 stride=1
@@ -103,6 +106,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=256
 size=1
 stride=1
@@ -110,6 +114,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=512
 size=3
 stride=1
@@ -117,6 +122,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=256
 size=1
 stride=1
@@ -124,6 +130,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=512
 size=3
 stride=1
@@ -131,6 +138,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=512
 size=1
 stride=1
@@ -138,6 +146,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=1024
 size=3
 stride=1
@@ -149,6 +158,7 @@ size=2
 stride=2
 
 [convolutional]
+batch_normalize=1
 filters=512
 size=1
 stride=1
@@ -156,6 +166,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=1024
 size=3
 stride=1
@@ -163,6 +174,7 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=512
 size=1
 stride=1
@@ -170,18 +182,22 @@ pad=1
 activation=leaky
 
 [convolutional]
+batch_normalize=1
 filters=1024
 size=3
 stride=1
 pad=1
 activation=leaky
 
-[avgpool]
-
-[connected]
-output=1000
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
 activation=leaky
 
+[avgpool]
+
 [softmax]
 groups=1
 
diff --git a/src/blas.c b/src/blas.c
index 00f0c3a..9d42562 100644
--- a/src/blas.c
+++ b/src/blas.c
@@ -1,6 +1,27 @@
 #include "blas.h"
 #include "math.h"
 #include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+void reorg(float *x, int size, int layers, int batch, int forward)
+{
+    float *swap = calloc(size*layers*batch, sizeof(float));
+    int i,c,b;
+    for(b = 0; b < batch; ++b){
+        for(c = 0; c < layers; ++c){
+            for(i = 0; i < size; ++i){
+                int i1 = b*layers*size + c*size + i;
+                int i2 = b*layers*size + i*layers + c;
+                if (forward) swap[i2] = x[i1];
+                else swap[i1] = x[i2];
+            }
+        }
+    }
+    memcpy(x, swap, size*layers*batch*sizeof(float));
+    free(swap);
+}
 
 void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c)
 {
diff --git a/src/blas.h b/src/blas.h
index b4cfcf2..4fdaa41 100644
--- a/src/blas.h
+++ b/src/blas.h
@@ -1,5 +1,6 @@
 #ifndef BLAS_H
 #define BLAS_H
+void reorg(float *x, int size, int layers, int batch, int forward);
 void pm(int M, int N, float *A);
 float *random_matrix(int rows, int cols);
 void time_random_matrix(int TA, int TB, int m, int k, int n);
@@ -69,6 +70,7 @@ void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, floa
 void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c);
 void mult_add_into_gpu(int num, float *a, float *b, float *c);
 
+void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out);
 
 #endif
 #endif
diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu
index ac537d8..3f7f1f9 100644
--- a/src/blas_kernels.cu
+++ b/src/blas_kernels.cu
@@ -312,6 +312,38 @@ __global__ void variance_kernel(float *x, float *mean, int batch, int filters, i
     variance[i] *= scale;
 }
 
+__global__ void reorg_kernel(int N, float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i >= N) return;
+    int in_index = i;
+    int in_w = i%w;
+    i = i/w;
+    int in_h = i%h;
+    i = i/h;
+    int in_c = i%c;
+    i = i/c;
+    int b = i%batch;
+
+    int out_c = c/(stride*stride);
+
+    int c2 = in_c % out_c;
+    int offset = in_c / out_c;
+    int w2 = in_w*stride + offset % stride;
+    int h2 = in_h*stride + offset / stride;
+    //printf("%d\n", offset);
+    int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b));
+
+   // printf("%d %d %d\n", w2, h2, c2);
+    //printf("%d %d\n", in_index, out_index);
+    //if(out_index >= N || out_index < 0) printf("bad bad bad \n");
+
+    if(forward) out[out_index] = x[in_index];
+    else out[in_index] = x[out_index];
+    //if(forward) out[1] = x[1];
+    //else out[0] = x[0];
+}
+
 __global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX,  float *Y, int OFFY, int INCY)
 {
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -488,6 +520,13 @@ extern "C" void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float *
     check_error(cudaPeekAtLastError());
 }
 
+extern "C" void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
+{
+    int size = w*h*c*batch;
+    reorg_kernel<<<cuda_gridsize(size), BLOCK>>>(size, x, w, h, c, batch, stride, forward, out);
+    check_error(cudaPeekAtLastError());
+}
+
 extern "C" void mask_ongpu(int N, float * X, float mask_num, float * mask)
 {
     mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask);
diff --git a/src/classifier.c b/src/classifier.c
index 2d0d0e0..608e3ab 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -3,6 +3,7 @@
 #include "parser.h"
 #include "option_list.h"
 #include "blas.h"
+#include "assert.h"
 #include "classifier.h"
 #include <sys/time.h>
 
@@ -40,6 +41,9 @@ list *read_data_cfg(char *filename)
 
 void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
 {
+    int nthreads = 2;
+    int i;
+
     data_seed = time(0);
     srand(time(0));
     float avg_loss = -1;
@@ -51,7 +55,8 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
     }
     if(clear) *net.seen = 0;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch*net.subdivisions;
+    int imgs = net.batch*net.subdivisions/nthreads;
+    assert(net.batch*net.subdivisions % nthreads == 0);
 
     list *options = read_data_cfg(datacfg);
 
@@ -66,9 +71,10 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
     printf("%d\n", plist->size);
     int N = plist->size;
     clock_t time;
-    pthread_t load_thread;
-    data train;
-    data buffer;
+
+    pthread_t *load_threads = calloc(nthreads, sizeof(pthread_t));
+    data *trains  = calloc(nthreads, sizeof(data));
+    data *buffers = calloc(nthreads, sizeof(data));
 
     load_args args = {0};
     args.w = net.w;
@@ -83,17 +89,27 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
     args.n = imgs;
     args.m = N;
     args.labels = labels;
-    args.d = &buffer;
     args.type = CLASSIFICATION_DATA;
 
-    load_thread = load_data_in_thread(args);
+    for(i = 0; i < nthreads; ++i){
+        args.d = buffers + i;
+        load_threads[i] = load_data_in_thread(args);
+    }
+
     int epoch = (*net.seen)/N;
     while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
         time=clock();
-        pthread_join(load_thread, 0);
-        train = buffer;
+        for(i = 0; i < nthreads; ++i){
+            pthread_join(load_threads[i], 0);
+            trains[i] = buffers[i];
+        }
+        data train = concat_datas(trains, nthreads);
+
+        for(i = 0; i < nthreads; ++i){
+            args.d = buffers + i;
+            load_threads[i] = load_data_in_thread(args);
+        }
 
-        load_thread = load_data_in_thread(args);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
 
@@ -111,6 +127,9 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
         free_data(train);
+        for(i = 0; i < nthreads; ++i){
+            free_data(trains[i]);
+        }
         if(*net.seen/N > epoch){
             epoch = *net.seen/N;
             char buff[256];
@@ -127,8 +146,14 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
     sprintf(buff, "%s/%s.weights", backup_directory, base);
     save_weights(net, buff);
 
-    pthread_join(load_thread, 0);
-    free_data(buffer);
+    for(i = 0; i < nthreads; ++i){
+        pthread_join(load_threads[i], 0);
+        free_data(buffers[i]);
+    }
+    free(buffers);
+    free(trains);
+    free(load_threads);
+
     free_network(net);
     free_ptrs((void**)labels, classes);
     free_ptrs((void**)paths, plist->size);
@@ -136,7 +161,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
     free(base);
 }
 
-void validate_classifier(char *datacfg, char *filename, char *weightfile)
+void validate_classifier_crop(char *datacfg, char *filename, char *weightfile)
 {
     int i = 0;
     network net = parse_network_cfg(filename);
@@ -708,10 +733,10 @@ void run_classifier(int argc, char **argv)
     else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
     else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
-    else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
-    else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
+    else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights);
     else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);
-    else if(0==strcmp(argv[2], "validsingle")) validate_classifier_single(data, cfg, weights);
+    else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
+    else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights);
     else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights);
 }
 
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index e8ae49c..006dc4c 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -104,36 +104,37 @@ image get_convolutional_delta(convolutional_layer l)
 
 size_t get_workspace_size(layer l){
 #ifdef CUDNN
-    size_t most = 0;
-    size_t s = 0;
-    cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
-            l.srcTensorDesc,
-            l.filterDesc,
-            l.convDesc,
-            l.dstTensorDesc,
-            l.fw_algo,
-            &s);
-    if (s > most) most = s;
-    cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
-            l.srcTensorDesc,
-            l.ddstTensorDesc,
-            l.convDesc,
-            l.dfilterDesc,
-            l.bf_algo,
-            &s);
-    if (s > most) most = s;
-    cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
-            l.filterDesc,
-            l.ddstTensorDesc,
-            l.convDesc,
-            l.dsrcTensorDesc,
-            l.bd_algo,
-            &s);
-    if (s > most) most = s;
-    return most;
-#else
+    if(gpu_index >= 0){
+        size_t most = 0;
+        size_t s = 0;
+        cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
+                l.srcTensorDesc,
+                l.filterDesc,
+                l.convDesc,
+                l.dstTensorDesc,
+                l.fw_algo,
+                &s);
+        if (s > most) most = s;
+        cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
+                l.srcTensorDesc,
+                l.ddstTensorDesc,
+                l.convDesc,
+                l.dfilterDesc,
+                l.bf_algo,
+                &s);
+        if (s > most) most = s;
+        cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
+                l.filterDesc,
+                l.ddstTensorDesc,
+                l.convDesc,
+                l.dsrcTensorDesc,
+                l.bd_algo,
+                &s);
+        if (s > most) most = s;
+        return most;
+    }
+    #endif
     return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
-#endif
 }
 
 #ifdef GPU
@@ -240,49 +241,51 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
     }
 
 #ifdef GPU
-    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
-    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
+    if(gpu_index >= 0){
+        l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+        l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
 
-    l.biases_gpu = cuda_make_array(l.biases, n);
-    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
+        l.biases_gpu = cuda_make_array(l.biases, n);
+        l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
 
-    l.scales_gpu = cuda_make_array(l.scales, n);
-    l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+        l.scales_gpu = cuda_make_array(l.scales, n);
+        l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
 
-    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
-    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+        l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
+        l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
 
-    if(binary){
-        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
-    }
-    if(xnor){
-        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
-        l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
-    }
+        if(binary){
+            l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+        }
+        if(xnor){
+            l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+            l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
+        }
 
-    if(batch_normalize){
-        l.mean_gpu = cuda_make_array(l.mean, n);
-        l.variance_gpu = cuda_make_array(l.variance, n);
+        if(batch_normalize){
+            l.mean_gpu = cuda_make_array(l.mean, n);
+            l.variance_gpu = cuda_make_array(l.variance, n);
 
-        l.rolling_mean_gpu = cuda_make_array(l.mean, n);
-        l.rolling_variance_gpu = cuda_make_array(l.variance, n);
+            l.rolling_mean_gpu = cuda_make_array(l.mean, n);
+            l.rolling_variance_gpu = cuda_make_array(l.variance, n);
 
-        l.mean_delta_gpu = cuda_make_array(l.mean, n);
-        l.variance_delta_gpu = cuda_make_array(l.variance, n);
+            l.mean_delta_gpu = cuda_make_array(l.mean, n);
+            l.variance_delta_gpu = cuda_make_array(l.variance, n);
 
-        l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
-        l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
-    }
+            l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+            l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+        }
 #ifdef CUDNN
-    cudnnCreateTensorDescriptor(&l.srcTensorDesc);
-    cudnnCreateTensorDescriptor(&l.dstTensorDesc);
-    cudnnCreateFilterDescriptor(&l.filterDesc);
-    cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
-    cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
-    cudnnCreateFilterDescriptor(&l.dfilterDesc);
-    cudnnCreateConvolutionDescriptor(&l.convDesc);
-    cudnn_convolutional_setup(&l);
+        cudnnCreateTensorDescriptor(&l.srcTensorDesc);
+        cudnnCreateTensorDescriptor(&l.dstTensorDesc);
+        cudnnCreateFilterDescriptor(&l.filterDesc);
+        cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
+        cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
+        cudnnCreateFilterDescriptor(&l.dfilterDesc);
+        cudnnCreateConvolutionDescriptor(&l.convDesc);
+        cudnn_convolutional_setup(&l);
 #endif
+    }
 #endif
     l.workspace_size = get_workspace_size(l);
     l.activation = activation;
diff --git a/src/darknet.c b/src/darknet.c
index 49c9747..c367abf 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -12,6 +12,7 @@
 #include "opencv2/highgui/highgui_c.h"
 #endif
 
+extern void run_voxel(int argc, char **argv);
 extern void run_imagenet(int argc, char **argv);
 extern void run_yolo(int argc, char **argv);
 extern void run_detector(int argc, char **argv);
@@ -28,6 +29,7 @@ extern void run_tag(int argc, char **argv);
 extern void run_cifar(int argc, char **argv);
 extern void run_go(int argc, char **argv);
 extern void run_art(int argc, char **argv);
+extern void run_super(int argc, char **argv);
 
 void change_rate(char *filename, float scale, float add)
 {
@@ -89,6 +91,23 @@ void average(int argc, char *argv[])
     save_weights(sum, outfile);
 }
 
+void speed(char *cfgfile, int tics)
+{
+    if (tics == 0) tics = 1000;
+    network net = parse_network_cfg(cfgfile);
+    set_batch_network(&net, 1);
+    int i;
+    time_t start = time(0);
+    image im = make_image(net.w, net.h, net.c);
+    for(i = 0; i < tics; ++i){
+        network_predict(net, im.data);
+    }
+    double t = difftime(time(0), start);
+    printf("\n%d evals, %f Seconds\n", tics, t);
+    printf("Speed: %f sec/eval\n", t/tics);
+    printf("Speed: %f Hz\n", tics/t);
+}
+
 void operations(char *cfgfile)
 {
     gpu_index = -1;
@@ -314,6 +333,10 @@ int main(int argc, char **argv)
         average(argc, argv);
     } else if (0 == strcmp(argv[1], "yolo")){
         run_yolo(argc, argv);
+    } else if (0 == strcmp(argv[1], "voxel")){
+        run_voxel(argc, argv);
+    } else if (0 == strcmp(argv[1], "super")){
+        run_super(argc, argv);
     } else if (0 == strcmp(argv[1], "detector")){
         run_detector(argc, argv);
     } else if (0 == strcmp(argv[1], "cifar")){
@@ -339,7 +362,7 @@ int main(int argc, char **argv)
     } else if (0 == strcmp(argv[1], "writing")){
         run_writing(argc, argv);
     } else if (0 == strcmp(argv[1], "3d")){
-        composite_3d(argv[2], argv[3], argv[4]);
+        composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
     } else if (0 == strcmp(argv[1], "test")){
         test_resize(argv[2]);
     } else if (0 == strcmp(argv[1], "captcha")){
@@ -360,6 +383,8 @@ int main(int argc, char **argv)
         rescale_net(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "ops")){
         operations(argv[2]);
+    } else if (0 == strcmp(argv[1], "speed")){
+        speed(argv[2], (argc > 3) ? atoi(argv[3]) : 0);
     } else if (0 == strcmp(argv[1], "partial")){
         partial(argv[2], argv[3], argv[4], atoi(argv[5]));
     } else if (0 == strcmp(argv[1], "average")){
diff --git a/src/data.c b/src/data.c
index afd7506..231fb93 100644
--- a/src/data.c
+++ b/src/data.c
@@ -8,6 +8,7 @@
 #include <string.h>
 
 unsigned int data_seed;
+pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
 
 list *get_paths(char *filename)
 {
@@ -26,12 +27,14 @@ char **get_random_paths_indexes(char **paths, int n, int m, int *indexes)
 {
     char **random_paths = calloc(n, sizeof(char*));
     int i;
+    pthread_mutex_lock(&mutex);
     for(i = 0; i < n; ++i){
         int index = rand_r(&data_seed)%m;
         indexes[i] = index;
         random_paths[i] = paths[index];
         if(i == 0) printf("%s\n", paths[index]);
     }
+    pthread_mutex_unlock(&mutex);
     return random_paths;
 }
 
@@ -39,11 +42,13 @@ char **get_random_paths(char **paths, int n, int m)
 {
     char **random_paths = calloc(n, sizeof(char*));
     int i;
+    pthread_mutex_lock(&mutex);
     for(i = 0; i < n; ++i){
         int index = rand_r(&data_seed)%m;
         random_paths[i] = paths[index];
         if(i == 0) printf("%s\n", paths[index]);
     }
+    pthread_mutex_unlock(&mutex);
     return random_paths;
 }
 
@@ -105,7 +110,7 @@ matrix load_image_cropped_paths(char **paths, int n, int min, int max, int size)
 
     for(i = 0; i < n; ++i){
         image im = load_image_color(paths[i], 0, 0);
-        image crop = random_crop_image(im, min, max, size);
+        image crop = random_resize_crop_image(im, min, max, size);
         int flip = rand_r(&data_seed)%2;
         if (flip) flip_image(crop);
         /*
@@ -667,6 +672,8 @@ void *load_thread(void *ptr)
         *a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
     } else if (a.type == CLASSIFICATION_DATA){
         *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
+    } else if (a.type == SUPER_DATA){
+        *a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale);
     } else if (a.type == STUDY_DATA){
         *a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
     } else if (a.type == WRITING_DATA){
@@ -737,6 +744,36 @@ data load_data_study(char **paths, int n, int m, char **labels, int k, int min,
     return d;
 }
 
+data load_data_super(char **paths, int n, int m, int w, int h, int scale)
+{
+    if(m) paths = get_random_paths(paths, n, m);
+    data d = {0};
+    d.shallow = 0;
+
+    int i;
+    d.X.rows = n;
+    d.X.vals = calloc(n, sizeof(float*));
+    d.X.cols = w*h*3;
+
+    d.y.rows = n;
+    d.y.vals = calloc(n, sizeof(float*));
+    d.y.cols = w*scale * h*scale * 3;
+
+    for(i = 0; i < n; ++i){
+        image im = load_image_color(paths[i], 0, 0);
+        image crop = random_crop_image(im, w*scale, h*scale);
+        int flip = rand_r(&data_seed)%2;
+        if (flip) flip_image(crop);
+        image resize = resize_image(crop, w, h);
+        d.X.vals[i] = resize.data;
+        d.y.vals[i] = crop.data;
+        free_image(im);
+    }
+
+    if(m) free(paths);
+    return d;
+}
+
 data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size)
 {
     if(m) paths = get_random_paths(paths, n, m);
@@ -786,6 +823,19 @@ data concat_data(data d1, data d2)
     return d;
 }
 
+data concat_datas(data *d, int n)
+{
+    int i;
+    data out = {0};
+    out.shallow = 1;
+    for(i = 0; i < n; ++i){
+        data new = concat_data(d[i], out);
+        free_data(out);
+        out = new;
+    }
+    return out;
+}
+
 data load_categorical_data_csv(char *filename, int target, int k)
 {
     data d = {0};
diff --git a/src/data.h b/src/data.h
index 11363f1..75123a5 100644
--- a/src/data.h
+++ b/src/data.h
@@ -30,7 +30,7 @@ typedef struct{
 } data;
 
 typedef enum {
-    CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA
+    CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA
 } data_type;
 
 typedef struct load_args{
@@ -49,6 +49,7 @@ typedef struct load_args{
     int min, max, size;
     int classes;
     int background;
+    int scale;
     float jitter;
     data *d;
     image *im;
@@ -73,6 +74,7 @@ data load_data(char **paths, int n, int m, char **labels, int k, int w, int h);
 data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter);
 data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size);
 data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
+data load_data_super(char **paths, int n, int m, int w, int h, int scale);
 data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
 data load_go(char *filename);
 
@@ -94,6 +96,7 @@ void translate_data_rows(data d, float s);
 void randomize_data(data d);
 data *split_data(data d, int part, int total);
 data concat_data(data d1, data d2);
+data concat_datas(data *d, int n);
 void fill_truth(char *path, char **labels, int k, float *truth);
 
 #endif
diff --git a/src/detector.c b/src/detector.c
new file mode 100644
index 0000000..64adaf3
--- /dev/null
+++ b/src/detector.c
@@ -0,0 +1,398 @@
+#include "network.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+#include "box.h"
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
+static char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
+static image voc_labels[20];
+
+void train_detector(char *cfgfile, char *weightfile)
+{
+    char *train_images = "/data/voc/train.txt";
+    char *backup_directory = "/home/pjreddie/backup/";
+    srand(time(0));
+    data_seed = time(0);
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    float avg_loss = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = net.batch*net.subdivisions;
+    int i = *net.seen/imgs;
+    data train, buffer;
+
+    layer l = net.layers[net.n - 1];
+
+    int classes = l.classes;
+    float jitter = l.jitter;
+
+    list *plist = get_paths(train_images);
+    //int N = plist->size;
+    char **paths = (char **)list_to_array(plist);
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.paths = paths;
+    args.n = imgs;
+    args.m = plist->size;
+    args.classes = classes;
+    args.jitter = jitter;
+    args.num_boxes = l.max_boxes;
+    args.d = &buffer;
+    args.type = DETECTION_DATA;
+
+    pthread_t load_thread = load_data_in_thread(args);
+    clock_t time;
+    //while(i*imgs < N*120){
+    while(get_current_batch(net) < net.max_batches){
+        i += 1;
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data_in_thread(args);
+
+/*
+        int k;
+        for(k = 0; k < l.max_boxes; ++k){
+            box b = float_to_box(train.y.vals[10] + 1 + k*5);
+            if(!b.x) break;
+            printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
+        }
+        image im = float_to_image(448, 448, 3, train.X.vals[10]);
+        int k;
+        for(k = 0; k < l.max_boxes; ++k){
+            box b = float_to_box(train.y.vals[10] + 1 + k*5);
+            printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
+            draw_bbox(im, b, 8, 1,0,0);
+        }
+        save_image(im, "truth11");
+*/
+
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+
+        time=clock();
+        float loss = train_network(net, train);
+        if (avg_loss < 0) avg_loss = loss;
+        avg_loss = avg_loss*.9 + loss*.1;
+
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+        if(i%1000==0 || (i < 1000 && i%100 == 0)){
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
+            save_weights(net, buff);
+        }
+        free_data(train);
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+    save_weights(net, buff);
+}
+
+static void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
+{
+    int i,j,n;
+    //int per_cell = 5*num+classes;
+    for (i = 0; i < side*side; ++i){
+        int row = i / side;
+        int col = i % side;
+        for(n = 0; n < num; ++n){
+            int index = i*num + n;
+            int p_index = index * (classes + 5) + 4;
+            float scale = predictions[p_index];
+            int box_index = index * (classes + 5);
+            boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w;
+            boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h;
+            boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w;
+            boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h;
+            for(j = 0; j < classes; ++j){
+                int class_index = index * (classes + 5) + 5;
+                float prob = scale*predictions[class_index+j];
+                probs[index][j] = (prob > thresh) ? prob : 0;
+            }
+            if(only_objectness){
+                probs[index][0] = scale;
+            }
+        }
+    }
+}
+
+void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
+{
+    int i, j;
+    for(i = 0; i < total; ++i){
+        float xmin = boxes[i].x - boxes[i].w/2.;
+        float xmax = boxes[i].x + boxes[i].w/2.;
+        float ymin = boxes[i].y - boxes[i].h/2.;
+        float ymax = boxes[i].y + boxes[i].h/2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        for(j = 0; j < classes; ++j){
+            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
+                    xmin, ymin, xmax, ymax);
+        }
+    }
+}
+
+void validate_detector(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *base = "results/comp4_det_test_";
+    //list *plist = get_paths("data/voc.2007.test");
+    list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt");
+    //list *plist = get_paths("data/voc.2012.test");
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n-1];
+    int classes = l.classes;
+    int side = l.w;
+
+    int j;
+    FILE **fps = calloc(classes, sizeof(FILE *));
+    for(j = 0; j < classes; ++j){
+        char buff[1024];
+        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
+        fps[j] = fopen(buff, "w");
+    }
+    box *boxes = calloc(side*side*l.n, sizeof(box));
+    float **probs = calloc(side*side*l.n, sizeof(float *));
+    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+    int m = plist->size;
+    int i=0;
+    int t;
+
+    float thresh = .001;
+    float nms = .5;
+
+    int nthreads = 2;
+    image *val = calloc(nthreads, sizeof(image));
+    image *val_resized = calloc(nthreads, sizeof(image));
+    image *buf = calloc(nthreads, sizeof(image));
+    image *buf_resized = calloc(nthreads, sizeof(image));
+    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.type = IMAGE_DATA;
+
+    for(t = 0; t < nthreads; ++t){
+        args.path = paths[i+t];
+        args.im = &buf[t];
+        args.resized = &buf_resized[t];
+        thr[t] = load_data_in_thread(args);
+    }
+    time_t start = time(0);
+    for(i = nthreads; i < m+nthreads; i += nthreads){
+        fprintf(stderr, "%d\n", i);
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+            val_resized[t] = buf_resized[t];
+        }
+        for(t = 0; t < nthreads && i+t < m; ++t){
+            args.path = paths[i+t];
+            args.im = &buf[t];
+            args.resized = &buf_resized[t];
+            thr[t] = load_data_in_thread(args);
+        }
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+            char *path = paths[i+t-nthreads];
+            char *id = basecfg(path);
+            float *X = val_resized[t].data;
+            float *predictions = network_predict(net, X);
+            int w = val[t].w;
+            int h = val[t].h;
+            convert_detections(predictions, classes, l.n, 0, side, w, h, thresh, probs, boxes, 0);
+            if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, nms);
+            print_detector_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
+            free(id);
+            free_image(val[t]);
+            free_image(val_resized[t]);
+        }
+    }
+    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
+}
+
+void validate_detector_recall(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *base = "results/comp4_det_test_";
+    list *plist = get_paths("data/voc.2007.test");
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n-1];
+    int classes = l.classes;
+    int square = l.sqrt;
+    int side = l.side;
+
+    int j, k;
+    FILE **fps = calloc(classes, sizeof(FILE *));
+    for(j = 0; j < classes; ++j){
+        char buff[1024];
+        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
+        fps[j] = fopen(buff, "w");
+    }
+    box *boxes = calloc(side*side*l.n, sizeof(box));
+    float **probs = calloc(side*side*l.n, sizeof(float *));
+    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+    int m = plist->size;
+    int i=0;
+
+    float thresh = .001;
+    float iou_thresh = .5;
+    float nms = .4;
+
+    int total = 0;
+    int correct = 0;
+    int proposals = 0;
+    float avg_iou = 0;
+
+    for(i = 0; i < m; ++i){
+        char *path = paths[i];
+        image orig = load_image_color(path, 0, 0);
+        image sized = resize_image(orig, net.w, net.h);
+        char *id = basecfg(path);
+        float *predictions = network_predict(net, sized.data);
+        convert_detections(predictions, classes, l.n, square, l.w, 1, 1, thresh, probs, boxes, 1);
+        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
+
+        char *labelpath = find_replace(path, "images", "labels");
+        labelpath = find_replace(labelpath, "JPEGImages", "labels");
+        labelpath = find_replace(labelpath, ".jpg", ".txt");
+        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        for(k = 0; k < side*side*l.n; ++k){
+            if(probs[k][0] > thresh){
+                ++proposals;
+            }
+        }
+        for (j = 0; j < num_labels; ++j) {
+            ++total;
+            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+            float best_iou = 0;
+            for(k = 0; k < side*side*l.n; ++k){
+                float iou = box_iou(boxes[k], t);
+                if(probs[k][0] > thresh && iou > best_iou){
+                    best_iou = iou;
+                }
+            }
+            avg_iou += best_iou;
+            if(best_iou > iou_thresh){
+                ++correct;
+            }
+        }
+
+        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
+        free(id);
+        free_image(orig);
+        free_image(sized);
+    }
+}
+
+void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh)
+{
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    detection_layer l = net.layers[net.n-1];
+    l.side = l.w;
+    set_batch_network(&net, 1);
+    srand(2222222);
+    clock_t time;
+    char buff[256];
+    char *input = buff;
+    int j;
+    float nms=.4;
+    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
+    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
+    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
+    while(1){
+        if(filename){
+            strncpy(input, filename, 256);
+        } else {
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            input = fgets(input, 256, stdin);
+            if(!input) return;
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input,0,0);
+        image sized = resize_image(im, net.w, net.h);
+        float *X = sized.data;
+        time=clock();
+        float *predictions = network_predict(net, X);
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+        convert_detections(predictions, l.classes, l.n, 0, l.w, 1, 1, thresh, probs, boxes, 0);
+        if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+        //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
+        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
+        save_image(im, "predictions");
+        show_image(im, "predictions");
+
+        free_image(im);
+        free_image(sized);
+#ifdef OPENCV
+        cvWaitKey(0);
+        cvDestroyAllWindows();
+#endif
+        if (filename) break;
+    }
+}
+
+void run_detector(int argc, char **argv)
+{
+    int i;
+    for(i = 0; i < 20; ++i){
+        char buff[256];
+        sprintf(buff, "data/labels/%s.png", voc_names[i]);
+        voc_labels[i] = load_image_color(buff, 0, 0);
+    }
+
+    float thresh = find_float_arg(argc, argv, "-thresh", .2);
+    if(argc < 4){
+        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+        return;
+    }
+
+    char *cfg = argv[3];
+    char *weights = (argc > 4) ? argv[4] : 0;
+    char *filename = (argc > 5) ? argv[5]: 0;
+    if(0==strcmp(argv[2], "test")) test_detector(cfg, weights, filename, thresh);
+    else if(0==strcmp(argv[2], "train")) train_detector(cfg, weights);
+    else if(0==strcmp(argv[2], "valid")) validate_detector(cfg, weights);
+    else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
+}
diff --git a/src/image.c b/src/image.c
index 98e80c9..fd890d0 100644
--- a/src/image.c
+++ b/src/image.c
@@ -347,23 +347,6 @@ void show_image_cv(image p, const char *name)
 #endif
     }
 
-    void save_image(image im, const char *name)
-    {
-        char buff[256];
-        //sprintf(buff, "%s (%d)", name, windows);
-        sprintf(buff, "%s.png", name);
-        unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char));
-        int i,k;
-        for(k = 0; k < im.c; ++k){
-            for(i = 0; i < im.w*im.h; ++i){
-                data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]);
-            }
-        }
-        int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
-        free(data);
-        if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
-    }
-
 #ifdef OPENCV
     image get_image_from_stream(CvCapture *cap)
     {
@@ -376,7 +359,7 @@ void show_image_cv(image p, const char *name)
 #endif
 
 #ifdef OPENCV
-    void save_image_jpg(image p, char *name)
+    void save_image_jpg(image p, const char *name)
     {
         image copy = copy_image(p);
         rgbgr_image(copy);
@@ -400,6 +383,28 @@ void show_image_cv(image p, const char *name)
     }
 #endif
 
+    void save_image(image im, const char *name)
+    {
+        #ifdef OPENCV
+        save_image_jpg(im, name);
+        #else
+        char buff[256];
+        //sprintf(buff, "%s (%d)", name, windows);
+        sprintf(buff, "%s.png", name);
+        unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char));
+        int i,k;
+        for(k = 0; k < im.c; ++k){
+            for(i = 0; i < im.w*im.h; ++i){
+                data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]);
+            }
+        }
+        int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
+        free(data);
+        if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
+        #endif
+    }
+
+
     void show_image_layers(image p, char *name)
     {
         int i;
@@ -539,7 +544,7 @@ int best_3d_shift(image a, image b, int min, int max)
     return best;
 }
 
-void composite_3d(char *f1, char *f2, char *out)
+void composite_3d(char *f1, char *f2, char *out, int delta)
 {
     if(!out) out = "out";
     image a = load_image(f1, 0,0,0);
@@ -551,7 +556,7 @@ void composite_3d(char *f1, char *f2, char *out)
     image c2 = crop_image(b, -10, shift, b.w, b.h);
     float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100);
 
-    if(d2 < d1){
+    if(d2 < d1 && 0){
         image swap = a;
         a = b;
         b = swap;
@@ -562,7 +567,7 @@ void composite_3d(char *f1, char *f2, char *out)
         printf("%d\n", shift);
     }
 
-    image c = crop_image(b, 0, shift, a.w, a.h);
+    image c = crop_image(b, delta, shift, a.w, a.h);
     int i;
     for(i = 0; i < c.w*c.h; ++i){
         c.data[i] = a.data[i];
@@ -590,7 +595,15 @@ image resize_min(image im, int min)
     return resized;
 }
 
-image random_crop_image(image im, int low, int high, int size)
+image random_crop_image(image im, int w, int h)
+{
+    int dx = rand_int(0, im.w - w);
+    int dy = rand_int(0, im.h - h);
+    image crop = crop_image(im, dx, dy, w, h);
+    return crop;
+}
+
+image random_resize_crop_image(image im, int low, int high, int size)
 {
     int r = rand_int(low, high);
     image resized = resize_min(im, r);
diff --git a/src/image.h b/src/image.h
index ece7cb6..e4eecd5 100644
--- a/src/image.h
+++ b/src/image.h
@@ -30,7 +30,8 @@ void draw_detections(image im, int num, float thresh, box *boxes, float **probs,
 image image_distance(image a, image b);
 void scale_image(image m, float s);
 image crop_image(image im, int dx, int dy, int w, int h);
-image random_crop_image(image im, int low, int high, int size);
+image random_crop_image(image im, int w, int h);
+image random_resize_crop_image(image im, int low, int high, int size);
 image resize_image(image im, int w, int h);
 image resize_min(image im, int min);
 void translate_image(image m, float s);
@@ -44,7 +45,8 @@ void saturate_exposure_image(image im, float sat, float exposure);
 void hsv_to_rgb(image im);
 void rgbgr_image(image im);
 void constrain_image(image im);
-void composite_3d(char *f1, char *f2, char *out);
+void composite_3d(char *f1, char *f2, char *out, int delta);
+int best_3d_shift_r(image a, image b, int min, int max);
 
 image grayscale_image(image im);
 image threshold_image(image im, float thresh);
@@ -61,7 +63,7 @@ void show_image_layers(image p, char *name);
 void show_image_collapsed(image p, char *name);
 
 #ifdef OPENCV
-void save_image_jpg(image p, char *name);
+void save_image_jpg(image p, const char *name);
 image get_image_from_stream(CvCapture *cap);
 image ipl_to_image(IplImage* src);
 #endif
diff --git a/src/layer.h b/src/layer.h
index 7182acd..10d64e5 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -30,6 +30,7 @@ typedef enum {
     NETWORK,
     XNOR,
     REGION,
+    REORG,
     BLANK
 } LAYER_TYPE;
 
@@ -80,6 +81,7 @@ struct layer{
     int does_cost;
     int joint;
     int noadjust;
+    int reorg;
 
     float alpha;
     float beta;
diff --git a/src/network.c b/src/network.c
index 6ed82ce..91baafe 100644
--- a/src/network.c
+++ b/src/network.c
@@ -20,6 +20,7 @@
 #include "normalization_layer.h"
 #include "batchnorm_layer.h"
 #include "maxpool_layer.h"
+#include "reorg_layer.h"
 #include "avgpool_layer.h"
 #include "cost_layer.h"
 #include "softmax_layer.h"
@@ -98,6 +99,8 @@ char *get_layer_string(LAYER_TYPE a)
             return "crnn";
         case MAXPOOL:
             return "maxpool";
+        case REORG:
+            return "reorg";
         case AVGPOOL:
             return "avgpool";
         case SOFTMAX:
@@ -181,6 +184,8 @@ void forward_network(network net, network_state state)
             forward_softmax_layer(l, state);
         } else if(l.type == MAXPOOL){
             forward_maxpool_layer(l, state);
+        } else if(l.type == REORG){
+            forward_reorg_layer(l, state);
         } else if(l.type == AVGPOOL){
             forward_avgpool_layer(l, state);
         } else if(l.type == DROPOUT){
@@ -222,7 +227,7 @@ void update_network(network net)
 float *get_network_output(network net)
 {
     #ifdef GPU
-        return get_network_output_gpu(net);
+        if (gpu_index >= 0) return get_network_output_gpu(net);
     #endif 
     int i;
     for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
@@ -279,6 +284,8 @@ void backward_network(network net, network_state state)
             backward_batchnorm_layer(l, state);
         } else if(l.type == MAXPOOL){
             if(i != 0) backward_maxpool_layer(l, state);
+        } else if(l.type == REORG){
+            backward_reorg_layer(l, state);
         } else if(l.type == AVGPOOL){
             backward_avgpool_layer(l, state);
         } else if(l.type == DROPOUT){
@@ -366,6 +373,7 @@ float train_network(network net, data d)
     return (float)sum/(n*batch);
 }
 
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
@@ -422,6 +430,8 @@ int resize_network(network *net, int w, int h)
             resize_crop_layer(&l, w, h);
         }else if(l.type == MAXPOOL){
             resize_maxpool_layer(&l, w, h);
+        }else if(l.type == REORG){
+            resize_reorg_layer(&l, w, h);
         }else if(l.type == AVGPOOL){
             resize_avgpool_layer(&l, w, h);
         }else if(l.type == NORMALIZATION){
@@ -439,11 +449,16 @@ int resize_network(network *net, int w, int h)
         if(l.type == AVGPOOL) break;
     }
 #ifdef GPU
+    if(gpu_index >= 0){
         cuda_free(net->workspace);
         net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
-#else
+    }else {
         free(net->workspace);
         net->workspace = calloc(1, workspace_size);
+    }
+#else
+    free(net->workspace);
+    net->workspace = calloc(1, workspace_size);
 #endif
     //fprintf(stderr, " Done!\n");
     return 0;
@@ -659,10 +674,10 @@ void free_network(network net)
         free_layer(net.layers[i]);
     }
     free(net.layers);
-    #ifdef GPU
+#ifdef GPU
     if(*net.input_gpu) cuda_free(*net.input_gpu);
     if(*net.truth_gpu) cuda_free(*net.truth_gpu);
     if(net.input_gpu) free(net.input_gpu);
     if(net.truth_gpu) free(net.truth_gpu);
-    #endif
+#endif
 }
diff --git a/src/network.h b/src/network.h
index af64e06..4157387 100644
--- a/src/network.h
+++ b/src/network.h
@@ -41,6 +41,8 @@ typedef struct network{
     int max_crop;
     int min_crop;
 
+    int gpu_index;
+
     #ifdef GPU
     float **input_gpu;
     float **truth_gpu;
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index e1d4129..3e01019 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -24,6 +24,7 @@ extern "C" {
 #include "activation_layer.h"
 #include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
+#include "reorg_layer.h"
 #include "avgpool_layer.h"
 #include "normalization_layer.h"
 #include "batchnorm_layer.h"
@@ -82,6 +83,8 @@ void forward_network_gpu(network net, network_state state)
             forward_batchnorm_layer_gpu(l, state);
         } else if(l.type == MAXPOOL){
             forward_maxpool_layer_gpu(l, state);
+        } else if(l.type == REORG){
+            forward_reorg_layer_gpu(l, state);
         } else if(l.type == AVGPOOL){
             forward_avgpool_layer_gpu(l, state);
         } else if(l.type == DROPOUT){
@@ -122,6 +125,8 @@ void backward_network_gpu(network net, network_state state)
             backward_local_layer_gpu(l, state);
         } else if(l.type == MAXPOOL){
             if(i != 0) backward_maxpool_layer_gpu(l, state);
+        } else if(l.type == REORG){
+            backward_reorg_layer_gpu(l, state);
         } else if(l.type == AVGPOOL){
             if(i != 0) backward_avgpool_layer_gpu(l, state);
         } else if(l.type == DROPOUT){
@@ -179,7 +184,7 @@ void update_network_gpu(network net)
     }
 }
 
-float train_network_datum_gpu(network net, float *x, float *y)
+void forward_backward_network_gpu(network net, float *x, float *y)
 {
     network_state state;
     state.index = 0;
@@ -200,12 +205,64 @@ float train_network_datum_gpu(network net, float *x, float *y)
     state.train = 1;
     forward_network_gpu(net, state);
     backward_network_gpu(net, state);
+}
+
+float train_network_datum_gpu(network net, float *x, float *y)
+{
+    forward_backward_network_gpu(net, x, y);
     float error = get_network_cost(net);
     if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net);
 
     return error;
 }
 
+typedef struct {
+    network net;
+    float *X;
+    float *y;
+} train_args;
+
+void *train_thread(void *ptr)
+{
+    train_args args = *(train_args*)ptr;
+
+    cudaError_t status = cudaSetDevice(args.net.gpu_index);
+    check_error(status);
+    forward_backward_network_gpu(args.net, args.X, args.y);
+    free(ptr);
+    return 0;
+}
+
+pthread_t train_network_in_thread(train_args args)
+{
+    pthread_t thread;
+    train_args *ptr = (train_args *)calloc(1, sizeof(train_args));
+    *ptr = args;
+    if(pthread_create(&thread, 0, train_thread, ptr)) error("Thread creation failed");
+    return thread;
+}
+
+float train_networks(network *nets, int n, data d)
+{
+    int batch = nets[0].batch;
+    float **X = (float **) calloc(n, sizeof(float *));
+    float **y = (float **) calloc(n, sizeof(float *));
+    pthread_t *threads = (pthread_t *) calloc(n, sizeof(pthread_t));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        X[i] = (float *) calloc(batch*d.X.cols, sizeof(float));
+        y[i] = (float *) calloc(batch*d.y.cols, sizeof(float));
+        get_next_batch(d, batch, i*batch, X[i], y[i]);
+        float err = train_network_datum(nets[i], X[i], y[i]);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
 float *get_network_output_layer_gpu(network net, int i)
 {
     layer l = net.layers[i];
diff --git a/src/parser.c b/src/parser.c
index b5c399f..503e7cf 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -3,6 +3,7 @@
 #include <stdlib.h>
 
 #include "parser.h"
+#include "assert.h"
 #include "activations.h"
 #include "crop_layer.h"
 #include "cost_layer.h"
@@ -16,6 +17,7 @@
 #include "gru_layer.h"
 #include "crnn_layer.h"
 #include "maxpool_layer.h"
+#include "reorg_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 #include "detection_layer.h"
@@ -43,6 +45,7 @@ int is_rnn(section *s);
 int is_gru(section *s);
 int is_crnn(section *s);
 int is_maxpool(section *s);
+int is_reorg(section *s);
 int is_avgpool(section *s);
 int is_dropout(section *s);
 int is_softmax(section *s);
@@ -115,13 +118,6 @@ deconvolutional_layer parse_deconvolutional(list *options, size_params params)
 
     deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
 
-    char *weights = option_find_str(options, "weights", 0);
-    char *biases = option_find_str(options, "biases", 0);
-    parse_data(weights, layer.filters, c*n*size*size);
-    parse_data(biases, layer.biases, n);
-    #ifdef GPU
-    if(weights || biases) push_deconvolutional_layer(layer);
-    #endif
     return layer;
 }
 
@@ -169,13 +165,6 @@ convolutional_layer parse_convolutional(list *options, size_params params)
     layer.flipped = option_find_int_quiet(options, "flipped", 0);
     layer.dot = option_find_float_quiet(options, "dot", 0);
 
-    char *weights = option_find_str(options, "weights", 0);
-    char *biases = option_find_str(options, "biases", 0);
-    parse_data(weights, layer.filters, c*n*size*size);
-    parse_data(biases, layer.biases, n);
-    #ifdef GPU
-    if(weights || biases) push_convolutional_layer(layer);
-    #endif
     return layer;
 }
 
@@ -229,13 +218,6 @@ connected_layer parse_connected(list *options, size_params params)
 
     connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
 
-    char *weights = option_find_str(options, "weights", 0);
-    char *biases = option_find_str(options, "biases", 0);
-    parse_data(biases, layer.biases, output);
-    parse_data(weights, layer.weights, params.inputs*output);
-    #ifdef GPU
-    if(weights || biases) push_connected_layer(layer);
-    #endif
     return layer;
 }
 
@@ -286,6 +268,7 @@ detection_layer parse_detection(list *options, size_params params)
     layer.class_scale = option_find_float(options, "class_scale", 1);
     layer.jitter = option_find_float(options, "jitter", .2);
     layer.random = option_find_int_quiet(options, "random", 0);
+    layer.reorg = option_find_int_quiet(options, "reorg", 0);
     return layer;
 }
 
@@ -322,6 +305,21 @@ crop_layer parse_crop(list *options, size_params params)
     return l;
 }
 
+layer parse_reorg(list *options, size_params params)
+{
+    int stride = option_find_int(options, "stride",1);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before reorg layer must output image.");
+
+    layer layer = make_reorg_layer(batch,w,h,c,stride);
+    return layer;
+}
+
 maxpool_layer parse_maxpool(list *options, size_params params)
 {
     int stride = option_find_int(options, "stride",1);
@@ -590,6 +588,8 @@ network parse_network_cfg(char *filename)
             l = parse_batchnorm(options, params);
         }else if(is_maxpool(s)){
             l = parse_maxpool(options, params);
+        }else if(is_reorg(s)){
+            l = parse_reorg(options, params);
         }else if(is_avgpool(s)){
             l = parse_avgpool(options, params);
         }else if(is_route(s)){
@@ -626,9 +626,13 @@ network parse_network_cfg(char *filename)
     net.outputs = get_network_output_size(net);
     net.output = get_network_output(net);
     if(workspace_size){
-    //printf("%ld\n", workspace_size);
+        //printf("%ld\n", workspace_size);
 #ifdef GPU
-        net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+        if(gpu_index >= 0){
+            net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+        }else {
+            net.workspace = calloc(1, workspace_size);
+        }
 #else
         net.workspace = calloc(1, workspace_size);
 #endif
@@ -659,6 +663,7 @@ LAYER_TYPE string_to_layer_type(char * type)
             || strcmp(type, "[connected]")==0) return CONNECTED;
     if (strcmp(type, "[max]")==0
             || strcmp(type, "[maxpool]")==0) return MAXPOOL;
+    if (strcmp(type, "[reorg]")==0) return REORG;
     if (strcmp(type, "[avg]")==0
             || strcmp(type, "[avgpool]")==0) return AVGPOOL;
     if (strcmp(type, "[dropout]")==0) return DROPOUT;
@@ -731,6 +736,10 @@ int is_connected(section *s)
     return (strcmp(s->type, "[conn]")==0
             || strcmp(s->type, "[connected]")==0);
 }
+int is_reorg(section *s)
+{
+    return (strcmp(s->type, "[reorg]")==0);
+}
 int is_maxpool(section *s)
 {
     return (strcmp(s->type, "[max]")==0
diff --git a/src/region_layer.c b/src/region_layer.c
new file mode 100644
index 0000000..5fe37c5
--- /dev/null
+++ b/src/region_layer.c
@@ -0,0 +1,286 @@
+#include "region_layer.h"
+#include "activations.h"
+#include "softmax_layer.h"
+#include "blas.h"
+#include "box.h"
+#include "cuda.h"
+#include "utils.h"
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+#include <stdlib.h>
+
+region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
+{
+    region_layer l = {0};
+    l.type = REGION;
+
+    l.n = n;
+    l.batch = batch;
+    l.h = h;
+    l.w = w;
+    l.classes = classes;
+    l.coords = coords;
+    l.cost = calloc(1, sizeof(float));
+    l.outputs = h*w*n*(classes + coords + 1);
+    l.inputs = l.outputs;
+    l.truths = 30*(5);
+    l.delta = calloc(batch*l.outputs, sizeof(float));
+    l.output = calloc(batch*l.outputs, sizeof(float));
+#ifdef GPU
+    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
+    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
+#endif
+
+    fprintf(stderr, "Region Layer\n");
+    srand(0);
+
+    return l;
+}
+
+box get_region_box2(float *x, int index, int i, int j, int w, int h)
+{
+    float aspect = exp(x[index+0]);
+    float scale  = logistic_activate(x[index+1]);
+    float move_x = x[index+2];
+    float move_y = x[index+3];
+
+    box b;
+    b.w = sqrt(scale * aspect);
+    b.h = b.w * 1./aspect;
+    b.x = move_x * b.w + (i + .5)/w;
+    b.y = move_y * b.h + (j + .5)/h;
+    return b;
+}
+
+float delta_region_box2(box truth, float *output, int index, int i, int j, int w, int h, float *delta)
+{
+    box pred = get_region_box2(output, index, i, j, w, h);
+    float iou = box_iou(pred, truth);
+    float true_aspect = truth.w/truth.h;
+    float true_scale = truth.w*truth.h;
+
+    float true_dx = (truth.x - (i+.5)/w) / truth.w;
+    float true_dy = (truth.y - (j+.5)/h) / truth.h;
+    delta[index + 0] = (true_aspect - exp(output[index + 0])) * exp(output[index + 0]);
+    delta[index + 1] = (true_scale - logistic_activate(output[index + 1])) * logistic_gradient(logistic_activate(output[index + 1]));
+    delta[index + 2] = true_dx - output[index + 2];
+    delta[index + 3] = true_dy - output[index + 3];
+    return iou;
+}
+
+box get_region_box(float *x, int index, int i, int j, int w, int h, int adjust, int logistic)
+{
+    box b;
+    b.x = (x[index + 0] + i + .5)/w;
+    b.y = (x[index + 1] + j + .5)/h;
+    b.w = x[index + 2];
+    b.h = x[index + 3];
+    if(logistic){
+        b.w = logistic_activate(x[index + 2]);
+        b.h = logistic_activate(x[index + 3]);
+    }
+    if(adjust && b.w < .01) b.w = .01;
+    if(adjust && b.h < .01) b.h = .01;
+    return b;
+}
+
+float delta_region_box(box truth, float *output, int index, int i, int j, int w, int h, float *delta, int logistic, float scale)
+{
+    box pred = get_region_box(output, index, i, j, w, h, 0, logistic);
+    float iou = box_iou(pred, truth);
+
+    delta[index + 0] = scale * (truth.x - pred.x);
+    delta[index + 1] = scale * (truth.y - pred.y);
+    delta[index + 2] = scale * ((truth.w - pred.w)*(logistic ? logistic_gradient(pred.w) : 1));
+    delta[index + 3] = scale * ((truth.h - pred.h)*(logistic ? logistic_gradient(pred.h) : 1));
+    return iou;
+}
+
+float logit(float x)
+{
+    return log(x/(1.-x));
+}
+
+float tisnan(float x)
+{
+    return (x != x);
+}
+
+#define LOG 1
+
+void forward_region_layer(const region_layer l, network_state state)
+{
+    int i,j,b,t,n;
+    int size = l.coords + l.classes + 1;
+    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
+    reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
+    for (b = 0; b < l.batch; ++b){
+        for(i = 0; i < l.h*l.w*l.n; ++i){
+            int index = size*i + b*l.outputs;
+            l.output[index + 4] = logistic_activate(l.output[index + 4]);
+            if(l.softmax){
+                softmax_array(l.output + index + 5, l.classes, 1, l.output + index + 5);
+            }
+        }
+    }
+    if(!state.train) return;
+    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
+    float avg_iou = 0;
+    float avg_cat = 0;
+    float avg_obj = 0;
+    float avg_anyobj = 0;
+    int count = 0;
+    *(l.cost) = 0;
+    for (b = 0; b < l.batch; ++b) {
+        for (j = 0; j < l.h; ++j) {
+            for (i = 0; i < l.w; ++i) {
+                for (n = 0; n < l.n; ++n) {
+                    int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
+                    box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
+                    float best_iou = 0;
+                    for(t = 0; t < 30; ++t){
+                        box truth = float_to_box(state.truth + t*5 + b*l.truths);
+                        if(!truth.x) break;
+                        float iou = box_iou(pred, truth);
+                        if (iou > best_iou) best_iou = iou;
+                    }
+                    avg_anyobj += l.output[index + 4];
+                    l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
+                    if(best_iou > .5) l.delta[index + 4] = 0;
+
+                    if(*(state.net.seen) < 6400){
+                        box truth = {0};
+                        truth.x = (i + .5)/l.w;
+                        truth.y = (j + .5)/l.h;
+                        truth.w = .5;
+                        truth.h = .5;
+                        delta_region_box(truth, l.output, index, i, j, l.w, l.h, l.delta, LOG, 1);
+                    }
+                }
+            }
+        }
+        for(t = 0; t < 30; ++t){
+            box truth = float_to_box(state.truth + t*5 + b*l.truths);
+            int class = state.truth[t*5 + b*l.truths + 4];
+            if(!truth.x) break;
+            float best_iou = 0;
+            int best_index = 0;
+            int best_n = 0;
+            i = (truth.x * l.w);
+            j = (truth.y * l.h);
+            //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
+            box truth_shift = truth;
+            truth_shift.x = 0;
+            truth_shift.y = 0;
+            printf("index %d %d\n",i, j);
+            for(n = 0; n < l.n; ++n){
+                int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
+                box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
+                printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
+                pred.x = 0;
+                pred.y = 0;
+                float iou = box_iou(pred, truth_shift);
+                if (iou > best_iou){
+                    best_index = index;
+                    best_iou = iou;
+                    best_n = n;
+                }
+            }
+            printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
+
+            float iou = delta_region_box(truth, l.output, best_index, i, j, l.w, l.h, l.delta, LOG, l.coord_scale);
+            avg_iou += iou;
+
+            //l.delta[best_index + 4] = iou - l.output[best_index + 4];
+            avg_obj += l.output[best_index + 4];
+            l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
+            if (l.rescore) {
+                l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
+            }
+            //printf("%f\n", l.delta[best_index+1]);
+            /*
+               if(isnan(l.delta[best_index+1])){
+               printf("%f\n", true_scale);
+               printf("%f\n", l.output[best_index + 1]);
+               printf("%f\n", truth.w);
+               printf("%f\n", truth.h);
+               error("bad");
+               }
+             */
+            for(n = 0; n < l.classes; ++n){
+                l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
+                if(n == class) avg_cat += l.output[best_index + 5 + n];
+            }
+            /*
+               if(0){
+               printf("truth: %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
+               printf("pred: %f %f %f %f\n\n", pred.x, pred.y, pred.w, pred.h);
+               float aspect = exp(true_aspect);
+               float scale  = logistic_activate(true_scale);
+               float move_x = true_dx;
+               float move_y = true_dy;
+
+               box b;
+               b.w = sqrt(scale * aspect);
+               b.h = b.w * 1./aspect;
+               b.x = move_x * b.w + (i + .5)/l.w;
+               b.y = move_y * b.h + (j + .5)/l.h;
+               printf("%f %f\n", b.x, truth.x);
+               printf("%f %f\n", b.y, truth.y);
+               printf("%f %f\n", b.w, truth.w);
+               printf("%f %f\n", b.h, truth.h);
+            //printf("%f\n", box_iou(b, truth));
+            }
+             */
+            ++count;
+        }
+    }
+    printf("\n");
+    reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), count);
+}
+
+void backward_region_layer(const region_layer l, network_state state)
+{
+    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
+}
+
+#ifdef GPU
+
+void forward_region_layer_gpu(const region_layer l, network_state state)
+{
+    /*
+       if(!state.train){
+       copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
+       return;
+       }
+     */
+
+    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
+    float *truth_cpu = 0;
+    if(state.truth){
+        int num_truth = l.batch*l.truths;
+        truth_cpu = calloc(num_truth, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, num_truth);
+    }
+    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+    network_state cpu_state = state;
+    cpu_state.train = state.train;
+    cpu_state.truth = truth_cpu;
+    cpu_state.input = in_cpu;
+    forward_region_layer(l, cpu_state);
+    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
+    free(cpu_state.input);
+    if(cpu_state.truth) free(cpu_state.truth);
+}
+
+void backward_region_layer_gpu(region_layer l, network_state state)
+{
+    axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1);
+    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
+}
+#endif
+
diff --git a/src/region_layer.h b/src/region_layer.h
new file mode 100644
index 0000000..a4156fd
--- /dev/null
+++ b/src/region_layer.h
@@ -0,0 +1,18 @@
+#ifndef REGION_LAYER_H
+#define REGION_LAYER_H
+
+#include "layer.h"
+#include "network.h"
+
+typedef layer region_layer;
+
+region_layer make_region_layer(int batch, int h, int w, int n, int classes, int coords);
+void forward_region_layer(const region_layer l, network_state state);
+void backward_region_layer(const region_layer l, network_state state);
+
+#ifdef GPU
+void forward_region_layer_gpu(const region_layer l, network_state state);
+void backward_region_layer_gpu(region_layer l, network_state state);
+#endif
+
+#endif
diff --git a/src/reorg_layer.c b/src/reorg_layer.c
new file mode 100644
index 0000000..55b425f
--- /dev/null
+++ b/src/reorg_layer.c
@@ -0,0 +1,111 @@
+#include "reorg_layer.h"
+#include "cuda.h"
+#include "blas.h"
+#include <stdio.h>
+
+
+layer make_reorg_layer(int batch, int h, int w, int c, int stride)
+{
+    layer l = {0};
+    l.type = REORG;
+    l.batch = batch;
+    l.stride = stride;
+    l.h = h;
+    l.w = w;
+    l.c = c;
+    l.out_w = w*stride;
+    l.out_h = h*stride;
+    l.out_c = c/(stride*stride);
+    fprintf(stderr, "Reorg Layer: %d x %d x %d image -> %d x %d x %d image, \n", w,h,c,l.out_w, l.out_h, l.out_c);
+    l.outputs = l.out_h * l.out_w * l.out_c;
+    l.inputs = h*w*c;
+    int output_size = l.out_h * l.out_w * l.out_c * batch;
+    l.output =  calloc(output_size, sizeof(float));
+    l.delta =   calloc(output_size, sizeof(float));
+    #ifdef GPU
+    l.output_gpu  = cuda_make_array(l.output, output_size);
+    l.delta_gpu   = cuda_make_array(l.delta, output_size);
+    #endif
+    return l;
+}
+
+void resize_reorg_layer(layer *l, int w, int h)
+{
+    int stride = l->stride;
+
+    l->h = h;
+    l->w = w;
+
+    l->out_w = w*stride;
+    l->out_h = h*stride;
+
+    l->outputs = l->out_h * l->out_w * l->out_c;
+    l->inputs = l->outputs;
+    int output_size = l->outputs * l->batch;
+
+    l->output = realloc(l->output, output_size * sizeof(float));
+    l->delta = realloc(l->delta, output_size * sizeof(float));
+
+    #ifdef GPU
+    cuda_free(l->output_gpu);
+    cuda_free(l->delta_gpu);
+    l->output_gpu  = cuda_make_array(l->output, output_size);
+    l->delta_gpu   = cuda_make_array(l->delta,  output_size);
+    #endif
+}
+
+void forward_reorg_layer(const layer l, network_state state)
+{
+    int b,i,j,k;
+
+    for(b = 0; b < l.batch; ++b){
+        for(k = 0; k < l.c; ++k){
+            for(j = 0; j < l.h; ++j){
+                for(i = 0; i < l.w; ++i){
+                    int in_index  = i + l.w*(j + l.h*(k + l.c*b));
+
+                    int c2 = k % l.out_c;
+                    int offset = k / l.out_c;
+                    int w2 = i*l.stride + offset % l.stride;
+                    int h2 = j*l.stride + offset / l.stride;
+                    int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b));
+                    l.output[out_index] = state.input[in_index];
+                }
+            }
+        }
+    }
+}
+
+void backward_reorg_layer(const layer l, network_state state)
+{
+    int b,i,j,k;
+
+    for(b = 0; b < l.batch; ++b){
+        for(k = 0; k < l.c; ++k){
+            for(j = 0; j < l.h; ++j){
+                for(i = 0; i < l.w; ++i){
+                    int in_index  = i + l.w*(j + l.h*(k + l.c*b));
+
+                    int c2 = k % l.out_c;
+                    int offset = k / l.out_c;
+                    int w2 = i*l.stride + offset % l.stride;
+                    int h2 = j*l.stride + offset / l.stride;
+                    int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b));
+                    state.delta[in_index] = l.delta[out_index];
+                }
+            }
+        }
+    }
+}
+
+#ifdef GPU
+void forward_reorg_layer_gpu(layer l, network_state state)
+{
+    reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output_gpu);
+}
+
+void backward_reorg_layer_gpu(layer l, network_state state)
+{
+    reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
+}
+#endif
diff --git a/src/reorg_layer.h b/src/reorg_layer.h
new file mode 100644
index 0000000..659bc7c
--- /dev/null
+++ b/src/reorg_layer.h
@@ -0,0 +1,20 @@
+#ifndef REORG_LAYER_H
+#define REORG_LAYER_H
+
+#include "image.h"
+#include "cuda.h"
+#include "layer.h"
+#include "network.h"
+
+layer make_reorg_layer(int batch, int h, int w, int c, int stride);
+void resize_reorg_layer(layer *l, int w, int h);
+void forward_reorg_layer(const layer l, network_state state);
+void backward_reorg_layer(const layer l, network_state state);
+
+#ifdef GPU
+void forward_reorg_layer_gpu(layer l, network_state state);
+void backward_reorg_layer_gpu(layer l, network_state state);
+#endif
+
+#endif
+
diff --git a/src/super.c b/src/super.c
new file mode 100644
index 0000000..67b941f
--- /dev/null
+++ b/src/super.c
@@ -0,0 +1,132 @@
+#include "network.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
+void train_super(char *cfgfile, char *weightfile)
+{
+    char *train_images = "/data/imagenet/imagenet1k.train.list";
+    char *backup_directory = "/home/pjreddie/backup/";
+    srand(time(0));
+    data_seed = time(0);
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    float avg_loss = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = net.batch*net.subdivisions;
+    int i = *net.seen/imgs;
+    data train, buffer;
+
+
+    list *plist = get_paths(train_images);
+    //int N = plist->size;
+    char **paths = (char **)list_to_array(plist);
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.scale = 4;
+    args.paths = paths;
+    args.n = imgs;
+    args.m = plist->size;
+    args.d = &buffer;
+    args.type = SUPER_DATA;
+
+    pthread_t load_thread = load_data_in_thread(args);
+    clock_t time;
+    //while(i*imgs < N*120){
+    while(get_current_batch(net) < net.max_batches){
+        i += 1;
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data_in_thread(args);
+
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+
+        time=clock();
+        float loss = train_network(net, train);
+        if (avg_loss < 0) avg_loss = loss;
+        avg_loss = avg_loss*.9 + loss*.1;
+
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+        if(i%1000==0){
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
+            save_weights(net, buff);
+        }
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup", backup_directory, base);
+            save_weights(net, buff);
+        }
+        free_data(train);
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+    save_weights(net, buff);
+}
+
+void test_super(char *cfgfile, char *weightfile, char *filename)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    srand(2222222);
+
+    clock_t time;
+    char buff[256];
+    char *input = buff;
+    while(1){
+        if(filename){
+            strncpy(input, filename, 256);
+        }else{
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            input = fgets(input, 256, stdin);
+            if(!input) return;
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input, 0, 0);
+        resize_network(&net, im.w, im.h);
+        printf("%d %d\n", im.w, im.h);
+
+        float *X = im.data;
+        time=clock();
+        network_predict(net, X);
+        image out = get_network_image(net);
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+        save_image(out, "out");
+
+        free_image(im);
+        if (filename) break;
+    }
+}
+
+
+void run_super(int argc, char **argv)
+{
+    if(argc < 4){
+        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+        return;
+    }
+
+    char *cfg = argv[3];
+    char *weights = (argc > 4) ? argv[4] : 0;
+    char *filename = (argc > 5) ? argv[5] : 0;
+    if(0==strcmp(argv[2], "train")) train_super(cfg, weights);
+    else if(0==strcmp(argv[2], "test")) test_super(cfg, weights, filename);
+    /*
+    else if(0==strcmp(argv[2], "valid")) validate_super(cfg, weights);
+    */
+}
diff --git a/src/utils.c b/src/utils.c
index 90af5cf..7386305 100644
--- a/src/utils.c
+++ b/src/utils.c
@@ -521,6 +521,11 @@ int max_index(float *a, int n)
 
 int rand_int(int min, int max)
 {
+    if (max < min){
+        int s = min;
+        min = max;
+        max = s;
+    }
     int r = (rand()%(max - min + 1)) + min;
     return r;
 }
diff --git a/src/voxel.c b/src/voxel.c
new file mode 100644
index 0000000..b41cf77
--- /dev/null
+++ b/src/voxel.c
@@ -0,0 +1,169 @@
+#include "network.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
+void extract_voxel(char *lfile, char *rfile, char *prefix)
+{
+    int w = 1920;
+    int h = 1080;
+#ifdef OPENCV
+        int shift = 0;
+        int count = 0;
+        CvCapture *lcap = cvCaptureFromFile(lfile);
+        CvCapture *rcap = cvCaptureFromFile(rfile);
+        while(1){
+            image l = get_image_from_stream(lcap);
+            image r = get_image_from_stream(rcap);
+            if(!l.w || !r.w) break;
+            if(count%100 == 0) {
+                shift = best_3d_shift_r(l, r, -l.h/100, l.h/100);
+                printf("%d\n", shift);
+            }
+            image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h);
+            image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h);
+            char buff[256];
+            sprintf(buff, "%s_%05d_l", prefix, count);
+            save_image(ls, buff);
+            sprintf(buff, "%s_%05d_r", prefix, count);
+            save_image(rs, buff);
+            free_image(l);
+            free_image(r);
+            free_image(ls);
+            free_image(rs);
+            ++count;
+        }
+
+#else
+printf("need OpenCV for extraction\n");
+#endif
+}
+
+void train_voxel(char *cfgfile, char *weightfile)
+{
+    char *train_images = "/data/imagenet/imagenet1k.train.list";
+    char *backup_directory = "/home/pjreddie/backup/";
+    srand(time(0));
+    data_seed = time(0);
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    float avg_loss = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = net.batch*net.subdivisions;
+    int i = *net.seen/imgs;
+    data train, buffer;
+
+
+    list *plist = get_paths(train_images);
+    //int N = plist->size;
+    char **paths = (char **)list_to_array(plist);
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.scale = 4;
+    args.paths = paths;
+    args.n = imgs;
+    args.m = plist->size;
+    args.d = &buffer;
+    args.type = SUPER_DATA;
+
+    pthread_t load_thread = load_data_in_thread(args);
+    clock_t time;
+    //while(i*imgs < N*120){
+    while(get_current_batch(net) < net.max_batches){
+        i += 1;
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data_in_thread(args);
+
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+
+        time=clock();
+        float loss = train_network(net, train);
+        if (avg_loss < 0) avg_loss = loss;
+        avg_loss = avg_loss*.9 + loss*.1;
+
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+        if(i%1000==0){
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
+            save_weights(net, buff);
+        }
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup", backup_directory, base);
+            save_weights(net, buff);
+        }
+        free_data(train);
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+    save_weights(net, buff);
+}
+
+void test_voxel(char *cfgfile, char *weightfile, char *filename)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    srand(2222222);
+
+    clock_t time;
+    char buff[256];
+    char *input = buff;
+    while(1){
+        if(filename){
+            strncpy(input, filename, 256);
+        }else{
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            input = fgets(input, 256, stdin);
+            if(!input) return;
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input, 0, 0);
+        resize_network(&net, im.w, im.h);
+        printf("%d %d\n", im.w, im.h);
+
+        float *X = im.data;
+        time=clock();
+        network_predict(net, X);
+        image out = get_network_image(net);
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+        save_image(out, "out");
+
+        free_image(im);
+        if (filename) break;
+    }
+}
+
+
+void run_voxel(int argc, char **argv)
+{
+    if(argc < 4){
+        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+        return;
+    }
+
+    char *cfg = argv[3];
+    char *weights = (argc > 4) ? argv[4] : 0;
+    char *filename = (argc > 5) ? argv[5] : 0;
+    if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights);
+    else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename);
+    else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]);
+    /*
+    else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights);
+    */
+}
-- 
GitLab