diff --git a/Makefile b/Makefile index eff05bcb3de42d08bdb6eb7d2cc8eb78763d8c95..66a851d87e09c7ddab8b5965a8890cb63df57028 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ -GPU=0 -OPENCV=0 +GPU=1 +OPENCV=1 DEBUG=0 ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 @@ -34,7 +34,7 @@ CFLAGS+= -DGPU LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand endif -OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o +OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o ifeq ($(GPU), 1) OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o endif diff --git a/scripts/dice_label.sh b/scripts/dice_label.sh new file mode 100644 index 0000000000000000000000000000000000000000..f19f8a49481b46d5a04dd18b1b05af8928b21957 --- /dev/null +++ b/scripts/dice_label.sh @@ -0,0 +1,20 @@ +mkdir -p images +mkdir -p images/orig +mkdir -p images/train +mkdir -p images/val + +ffmpeg -i Face1.mp4 images/orig/face1_%6d.jpg +ffmpeg -i Face2.mp4 images/orig/face2_%6d.jpg +ffmpeg -i Face3.mp4 images/orig/face3_%6d.jpg +ffmpeg -i Face4.mp4 images/orig/face4_%6d.jpg +ffmpeg -i Face5.mp4 images/orig/face5_%6d.jpg +ffmpeg -i Face6.mp4 images/orig/face6_%6d.jpg + +mogrify -resize 100x100^ -gravity center -crop 100x100+0+0 +repage images/orig/* + +ls images/orig/* | shuf | head -n 1000 | xargs mv -t images/val +mv images/orig/* images/train + +find `pwd`/images/train > dice.train.list -name \*.jpg +find `pwd`/images/val > dice.val.list -name \*.jpg + diff --git a/src/darknet.c b/src/darknet.c index d7fb1f5c43be9edc1ec6db56d04318f868a8cde1..c03ba5b1f5c5a986584081dc33aa3114e4159b28 100644 --- a/src/darknet.c +++ b/src/darknet.c @@ -15,6 +15,7 @@ extern void run_coco(int argc, char **argv); extern void run_writing(int argc, char **argv); extern void run_captcha(int argc, char **argv); extern void run_nightmare(int argc, char **argv); +extern void run_dice(int argc, char **argv); void change_rate(char *filename, float scale, float add) { @@ -115,6 +116,8 @@ int main(int argc, char **argv) run_detection(argc, argv); } else if (0 == strcmp(argv[1], "coco")){ run_coco(argc, argv); + } else if (0 == strcmp(argv[1], "dice")){ + run_dice(argc, argv); } else if (0 == strcmp(argv[1], "writing")){ run_writing(argc, argv); } else if (0 == strcmp(argv[1], "test")){ diff --git a/src/dice.c b/src/dice.c new file mode 100644 index 0000000000000000000000000000000000000000..3283fe9503b8b8d0e45a2f84e2941331bfc4a656 --- /dev/null +++ b/src/dice.c @@ -0,0 +1,118 @@ +#include "network.h" +#include "utils.h" +#include "parser.h" + +char *dice_labels[] = {"face1","face2","face3","face4","face5","face6"}; + +void train_dice(char *cfgfile, char *weightfile) +{ + data_seed = time(0); + srand(time(0)); + float avg_loss = -1; + char *base = basecfg(cfgfile); + char *backup_directory = "/home/pjreddie/backup/"; + printf("%s\n", base); + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); + int imgs = 1024; + int i = net.seen/imgs; + char **labels = dice_labels; + list *plist = get_paths("data/dice/dice.train.list"); + char **paths = (char **)list_to_array(plist); + printf("%d\n", plist->size); + clock_t time; + while(1){ + ++i; + time=clock(); + data train = load_data(paths, imgs, plist->size, labels, 6, net.w, net.h); + printf("Loaded: %lf seconds\n", sec(clock()-time)); + + time=clock(); + float loss = train_network(net, train); + net.seen += imgs; + if(avg_loss == -1) avg_loss = loss; + avg_loss = avg_loss*.9 + loss*.1; + printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); + free_data(train); + if((i % 100) == 0) net.learning_rate *= .1; + if(i%100==0){ + char buff[256]; + sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i); + save_weights(net, buff); + } + } +} + +void validate_dice(char *filename, char *weightfile) +{ + network net = parse_network_cfg(filename); + if(weightfile){ + load_weights(&net, weightfile); + } + srand(time(0)); + + char **labels = dice_labels; + list *plist = get_paths("data/dice/dice.val.list"); + + char **paths = (char **)list_to_array(plist); + int m = plist->size; + free_list(plist); + + data val = load_data(paths, m, 0, labels, 6, net.w, net.h); + float *acc = network_accuracies(net, val); + printf("Validation Accuracy: %f, %d images\n", acc[0], m); + free_data(val); +} + +void test_dice(char *cfgfile, char *weightfile, char *filename) +{ + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + set_batch_network(&net, 1); + srand(2222222); + int i = 0; + char **names = dice_labels; + char input[256]; + int indexes[6]; + while(1){ + if(filename){ + strncpy(input, filename, 256); + }else{ + printf("Enter Image Path: "); + fflush(stdout); + fgets(input, 256, stdin); + strtok(input, "\n"); + } + image im = load_image_color(input, net.w, net.h); + float *X = im.data; + float *predictions = network_predict(net, X); + top_predictions(net, 6, indexes); + for(i = 0; i < 6; ++i){ + int index = indexes[i]; + printf("%s: %f\n", names[index], predictions[index]); + } + free_image(im); + if (filename) break; + } +} + +void run_dice(int argc, char **argv) +{ + if(argc < 4){ + fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); + return; + } + + char *cfg = argv[3]; + char *weights = (argc > 4) ? argv[4] : 0; + char *filename = (argc > 5) ? argv[5]: 0; + if(0==strcmp(argv[2], "test")) test_dice(cfg, weights, filename); + else if(0==strcmp(argv[2], "train")) train_dice(cfg, weights); + else if(0==strcmp(argv[2], "valid")) validate_dice(cfg, weights); +} + diff --git a/src/imagenet.c b/src/imagenet.c index 96e74d0ab9873bc489f627fe910b20b3f5eff28d..499a8d3a8d0725f0c4fba19f75ce30103c66c020 100644 --- a/src/imagenet.c +++ b/src/imagenet.c @@ -8,6 +8,7 @@ void train_imagenet(char *cfgfile, char *weightfile) srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); + char *backup_directory = "/home/pjreddie/backup/"; printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ @@ -50,7 +51,7 @@ void train_imagenet(char *cfgfile, char *weightfile) if((i % 30000) == 0) net.learning_rate *= .1; if(i%1000==0){ char buff[256]; - sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); + sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i); save_weights(net, buff); } }