From 4ab366a805a7678642539465d68ef906b4599aeb Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 22 Dec 2014 14:35:37 -0800
Subject: [PATCH] some fixes, some other experiments

---
 Makefile              |  2 +-
 src/axpy.cl           |  2 +-
 src/cnn.c             | 38 +++++++++++++++++++++-----------------
 src/connected_layer.c | 36 ++++++++++++++++++++++++++++++++++--
 src/connected_layer.h |  5 +++--
 src/data.c            | 42 ++++++++++++++++--------------------------
 src/dropout_layer.c   |  1 +
 src/image.c           |  1 +
 src/network.c         |  3 ++-
 src/network_gpu.c     |  1 +
 10 files changed, 81 insertions(+), 50 deletions(-)

diff --git a/Makefile b/Makefile
index a76c532..3247999 100644
--- a/Makefile
+++ b/Makefile
@@ -27,7 +27,7 @@ LDFLAGS+= -lOpenCL
 endif
 endif
 CFLAGS= $(COMMON) $(OPTS)
-CFLAGS= $(COMMON) -O0 -g
+#CFLAGS= $(COMMON) -O0 -g
 LDFLAGS+=`pkg-config --libs opencv` -lm -pthread
 VPATH=./src/
 EXEC=cnn
diff --git a/src/axpy.cl b/src/axpy.cl
index 04eb534..1503e8f 100644
--- a/src/axpy.cl
+++ b/src/axpy.cl
@@ -13,7 +13,7 @@ __kernel void scal(int N, float ALPHA, __global float *X, int INCX)
 __kernel void mask(int n, __global float *x, __global float *mask, int mod)
 {
     int i = get_global_id(0);
-    x[i] = (mask[(i/mod)*mod] || i%mod == 0) ? x[i] : 0;
+    x[i] = (i%mod && !mask[(i/mod)*mod]) ? 0 : x[i];
 }
 
 __kernel void copy(int N, __global float *X, int OFFX, int INCX, __global float *Y, int OFFY, int INCY)
diff --git a/src/cnn.c b/src/cnn.c
index fd83ee8..59948aa 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -31,21 +31,23 @@ void test_parser()
     save_network(net, "cfg/trained_imagenet_smaller.cfg");
 }
 
+#define AMNT 3
 void draw_detection(image im, float *box, int side)
 {
     int j;
     int r, c;
-    float amount[5] = {0,0,0,0,0};
+    float amount[AMNT] = {0};
     for(r = 0; r < side*side; ++r){
-        for(j = 0; j < 5; ++j){
-            if(box[r*5] > amount[j]) {
-                amount[j] = box[r*5];
-                break;
+        float val = box[r*5];
+        for(j = 0; j < AMNT; ++j){
+            if(val > amount[j]) {
+                float swap = val;
+                val = amount[j];
+                amount[j] = swap;
             }
         }
     }
-    float smallest = amount[0];
-    for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j];
+    float smallest = amount[AMNT-1];
 
     for(r = 0; r < side; ++r){
         for(c = 0; c < side; ++c){
@@ -57,9 +59,9 @@ void draw_detection(image im, float *box, int side)
                 int x = c*d+box[j+2]*d;
                 int h = box[j+3]*256;
                 int w = box[j+4]*256;
-                printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
-                printf("%d %d %d %d\n", x, y, w, h);
-                printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
+                //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
+                //printf("%d %d %d %d\n", x, y, w, h);
+                //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
                 draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
             }
         }
@@ -87,9 +89,11 @@ void train_detection_net()
         i += 1;
         time=clock();
         data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256);
-        /*
-        image im = float_to_image(224, 224, 3, train.X.vals[0]);
-        draw_detection(im, train.y.vals[0], 7);
+        //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
+
+/*
+        image im = float_to_image(224, 224, 3, train.X.vals[923]);
+        draw_detection(im, train.y.vals[923], 7);
         */
 
         normalize_data_rows(train);
@@ -151,10 +155,10 @@ void train_imagenet(char *cfgfile)
     //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
     srand(time(0));
     network net = parse_network_cfg(cfgfile);
-    set_learning_network(&net, net.learning_rate, .5, .0005);
+    set_learning_network(&net, net.learning_rate/10., .5, .0005);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1024;
-    int i = 23030;
+    int i = 44700;
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
     list *plist = get_paths("/data/imagenet/cls.train.list");
     char **paths = (char **)list_to_array(plist);
@@ -385,8 +389,8 @@ void train_nist(char *cfgfile)
     data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
     network net = parse_network_cfg(cfgfile);
     int count = 0;
-    int iters = 60000/net.batch + 1;
-    while(++count <= 10){
+    int iters = 6000/net.batch + 1;
+    while(++count <= 100){
         clock_t start = clock(), end;
         normalize_data_rows(train);
         normalize_data_rows(test);
diff --git a/src/connected_layer.c b/src/connected_layer.c
index 96236a3..938b8b8 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -24,15 +24,21 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
     layer->delta = calloc(batch*outputs, sizeof(float*));
 
     layer->weight_updates = calloc(inputs*outputs, sizeof(float));
+    layer->bias_updates = calloc(outputs, sizeof(float));
+
+    layer->weight_prev = calloc(inputs*outputs, sizeof(float));
+    layer->bias_prev = calloc(outputs, sizeof(float));
+
     layer->weights = calloc(inputs*outputs, sizeof(float));
+    layer->biases = calloc(outputs, sizeof(float));
+
+
     float scale = 1./sqrt(inputs);
     //scale = .01;
     for(i = 0; i < inputs*outputs; ++i){
         layer->weights[i] = scale*rand_normal();
     }
 
-    layer->bias_updates = calloc(outputs, sizeof(float));
-    layer->biases = calloc(outputs, sizeof(float));
     for(i = 0; i < outputs; ++i){
         layer->biases[i] = scale;
     }
@@ -52,6 +58,32 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
     return layer;
 }
 
+void secret_update_connected_layer(connected_layer *layer)
+{
+    int n = layer->outputs*layer->inputs;
+    float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1);
+    float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
+                * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
+    float cos = dot/mag;
+    if(cos > .3) layer->learning_rate *= 1.1;
+    else if (cos < -.3) layer-> learning_rate /= 1.1;
+
+    scal_cpu(n, layer->momentum, layer->weight_prev, 1);
+    axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1);
+    scal_cpu(n, 0, layer->weight_updates, 1);
+
+    scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
+    axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
+    scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
+
+    //printf("rate:   %f\n", layer->learning_rate);
+
+    axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
+
+    axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
+    axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
+}
+
 void update_connected_layer(connected_layer layer)
 {
     axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
diff --git a/src/connected_layer.h b/src/connected_layer.h
index 1e5b4a7..0895728 100644
--- a/src/connected_layer.h
+++ b/src/connected_layer.h
@@ -18,8 +18,8 @@ typedef struct{
     float *weight_updates;
     float *bias_updates;
 
-    float *weight_adapt;
-    float *bias_adapt;
+    float *weight_prev;
+    float *bias_prev;
 
     float *output;
     float *delta;
@@ -38,6 +38,7 @@ typedef struct{
 
 } connected_layer;
 
+void secret_update_connected_layer(connected_layer *layer);
 connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay);
 
 void forward_connected_layer(connected_layer layer, float *input);
diff --git a/src/data.c b/src/data.c
index 86e59ef..3f74f6b 100644
--- a/src/data.c
+++ b/src/data.c
@@ -81,6 +81,18 @@ matrix load_image_paths(char **paths, int n, int h, int w)
     return X;
 }
 
+char **get_random_paths(char **paths, int n, int m)
+{
+    char **random_paths = calloc(n, sizeof(char*));
+    int i;
+    for(i = 0; i < n; ++i){
+        int index = rand()%m;
+        random_paths[i] = paths[index];
+        if(i == 0) printf("%s\n", paths[index]);
+    }
+    return random_paths;
+}
+
 matrix load_labels_paths(char **paths, int n, char **labels, int k)
 {
     matrix y = make_matrix(n, k);
@@ -138,13 +150,8 @@ void free_data(data d)
 
 data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
 {
-    char **random_paths = calloc(n, sizeof(char*));
+    char **random_paths = get_random_paths(paths, n, m);
     int i;
-    for(i = 0; i < n; ++i){
-        int index = rand()%m;
-        random_paths[i] = paths[index];
-        if(i == 0) printf("%s\n", paths[index]);
-    }
     data d;
     d.shallow = 0;
     d.X = load_image_paths(random_paths, n, h, w);
@@ -154,10 +161,11 @@ data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w,
         int dx = rand()%32;
         int dy = rand()%32;
         fill_truth_detection(random_paths[i], d.y.vals[i], 224, 224, nh, nw, scale, dx, dy);
-
         image a = float_to_image(h, w, 3, d.X.vals[i]);
         jitter_image(a,224,224,dy,dx);
     }
+    d.X.cols = 224*224*3;
+   // print_matrix(d.y);
     free(random_paths);
     return d;
 }
@@ -165,13 +173,7 @@ data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w,
 
 data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
 {
-    char **random_paths = calloc(n, sizeof(char*));
-    int i;
-    for(i = 0; i < n; ++i){
-        int index = rand()%m;
-        random_paths[i] = paths[index];
-        if(i == 0) printf("%s\n", paths[index]);
-    }
+    char **random_paths = get_random_paths(paths, n, m);
     data d;
     d.shallow = 0;
     d.X = load_image_paths(random_paths, n, h, w);
@@ -180,18 +182,6 @@ data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh
     return d;
 }
 
-char **get_random_paths(char **paths, int n, int m)
-{
-    char **random_paths = calloc(n, sizeof(char*));
-    int i;
-    for(i = 0; i < n; ++i){
-        int index = rand()%m;
-        random_paths[i] = paths[index];
-        if(i == 0) printf("%s\n", paths[index]);
-    }
-    return random_paths;
-}
-
 data load_data(char **paths, int n, int m, char **labels, int k, int h, int w)
 {
     if(m) paths = get_random_paths(paths, n, m);
diff --git a/src/dropout_layer.c b/src/dropout_layer.c
index 8104b56..edcb426 100644
--- a/src/dropout_layer.c
+++ b/src/dropout_layer.c
@@ -80,6 +80,7 @@ void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input)
 
 void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta)
 {
+    if(!delta) return;
     int size = layer.inputs*layer.batch;
 
     cl_kernel kernel = get_dropout_kernel();
diff --git a/src/image.c b/src/image.c
index a2664a9..ddb5bf5 100644
--- a/src/image.c
+++ b/src/image.c
@@ -39,6 +39,7 @@ void jitter_image(image a, int h, int w, int dh, int dw)
             for(j = 0; j < w; ++j){
                 int src = j + dw + (i+dh)*a.w + k*a.w*a.h;
                 int dst = j + i*w + k*w*h;
+                //printf("%d %d\n", src, dst);
                 a.data[dst] = a.data[src];
             }
         }
diff --git a/src/network.c b/src/network.c
index 0bf5357..42253dc 100644
--- a/src/network.c
+++ b/src/network.c
@@ -103,7 +103,8 @@ void update_network(network net)
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer);
+            secret_update_connected_layer((connected_layer *)net.layers[i]);
+            //update_connected_layer(layer);
         }
     }
 }
diff --git a/src/network_gpu.c b/src/network_gpu.c
index 6ff95c8..4d2c8d3 100644
--- a/src/network_gpu.c
+++ b/src/network_gpu.c
@@ -195,6 +195,7 @@ float *get_network_output_layer_gpu(network net, int i)
     }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
+        cl_read_array(layer.output_cl, layer.output, layer.outputs*layer.batch);
         return layer.output;
     }
     else if(net.types[i] == MAXPOOL){
-- 
GitLab