From 32d2c969973aa98635123743f321859192ff581d Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 9 Jun 2016 15:09:30 -0700
Subject: [PATCH] hiding secret broken things

---
 Makefile                 |   6 +-
 ai2.mk                   |  79 ------
 src/binary_convolution.c | 598 ---------------------------------------
 src/binary_convolution.h | 218 --------------
 src/common.c             |  81 ------
 src/common.h             |  50 ----
 6 files changed, 3 insertions(+), 1029 deletions(-)
 delete mode 100644 ai2.mk
 delete mode 100644 src/binary_convolution.c
 delete mode 100644 src/binary_convolution.h
 delete mode 100644 src/common.c
 delete mode 100644 src/common.h

diff --git a/Makefile b/Makefile
index f3e4b79..28a0d17 100644
--- a/Makefile
+++ b/Makefile
@@ -1,6 +1,6 @@
-GPU=1
-CUDNN=1
-OPENCV=1
+GPU=0
+CUDNN=0
+OPENCV=0
 DEBUG=0
 
 ARCH= --gpu-architecture=compute_52 --gpu-code=compute_52 
diff --git a/ai2.mk b/ai2.mk
deleted file mode 100644
index 57edc89..0000000
--- a/ai2.mk
+++ /dev/null
@@ -1,79 +0,0 @@
-GPU=0
-CUDNN=0
-OPENCV=0
-DEBUG=1
-AI2=1
-
-ARCH= --gpu-architecture=compute_52 --gpu-code=compute_52 
-
-VPATH=./src/
-EXEC=darknet
-OBJDIR=./obj/
-
-CC=gcc -std=gnu11
-NVCC=nvcc
-OPTS=-Ofast
-LDFLAGS= -lm -pthread 
-COMMON= 
-CFLAGS=-Wall -Wfatal-errors 
-
-ifeq ($(DEBUG), 1) 
-OPTS=-O0 -g
-endif
-
-CFLAGS+=$(OPTS)
-
-ifeq ($(OPENCV), 1) 
-COMMON+= -DOPENCV
-CFLAGS+= -DOPENCV
-LDFLAGS+= `pkg-config --libs opencv` 
-COMMON+= `pkg-config --cflags opencv` 
-endif
-
-ifeq ($(AI2), 1) 
-COMMON+= -DAI2
-CFLAGS+= -DAI2
-endif
-
-ifeq ($(GPU), 1) 
-COMMON+= -DGPU -I/usr/local/cuda/include/
-CFLAGS+= -DGPU
-LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
-endif
-
-ifeq ($(CUDNN), 1) 
-COMMON+= -DCUDNN 
-CFLAGS+= -DCUDNN
-LDFLAGS+= -lcudnn
-endif
-
-OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o art.o xnor_layer.o common.o binary_convolution.o
-ifeq ($(GPU), 1) 
-LDFLAGS+= -lstdc++ 
-OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
-endif
-
-OBJS = $(addprefix $(OBJDIR), $(OBJ))
-DEPS = $(wildcard src/*.h) Makefile
-
-all: obj results $(EXEC)
-
-$(EXEC): $(OBJS)
-	$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
-
-$(OBJDIR)%.o: %.c $(DEPS)
-	$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
-
-$(OBJDIR)%.o: %.cu $(DEPS)
-	$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
-
-obj:
-	mkdir -p obj
-results:
-	mkdir -p results
-
-.PHONY: clean
-
-clean:
-	rm -rf $(OBJS) $(EXEC)
-
diff --git a/src/binary_convolution.c b/src/binary_convolution.c
deleted file mode 100644
index dfededa..0000000
--- a/src/binary_convolution.c
+++ /dev/null
@@ -1,598 +0,0 @@
-#include "binary_convolution.h"
-
-int ai2_bin_dp(BINARY_WORD *a, BINARY_WORD *b, dim3 vdim) {     // TODO unroll
-    int accumulator = 0;
-    for (int z = 0; z < vdim.z / BITS_PER_BINARY_WORD; z++) {
-        for (int y = 0; y < vdim.y; y++) {
-            for (int x = 0; x < vdim.x; x++) {
-                int idx = z*vdim.y*vdim.x + y*vdim.x + x;
-                accumulator += __builtin_popcount(~(a[idx] ^ b[idx]));   // count the XNOR of the two bit vectors
-            }
-        }
-    }
-
-    return accumulator;
-}
-
-/** 
- * Pre-conditions: 
- *                  alpha_volume is an array of size x*y*z.
- *                  alpha_plane is an array of size x*y.
- *                  alpha_volume (x,y,z) is transposed to (z,x,y).
- */
-void ai2_calc_alpha(float *alpha_plane, float *alpha_volume, dim3 vdim) {
-    for (int y = 0; y < vdim.y; ++y) {
-        for (int x = 0; x < vdim.x; ++x) {
-            int out = y * vdim.x + x;
-            double accum = 0.0;
-            for (int z = 0; z < vdim.z; ++z) {
-                accum += alpha_volume[out * vdim.z + z];
-            }
-
-            alpha_plane[out] = accum / vdim.z;
-        }
-    }
-}
-
-/** @brief Wrapper function for generating the beta scaling factor */
-void ai2_calc_beta(float *beta_plane, float *beta_volume, dim3 vdim) {
-    ai2_calc_alpha(beta_plane, beta_volume, vdim);
-}
-
-/** @brief Set the bit in a binary word */
-void ai2_bitset(BINARY_WORD *bword, unsigned int position) {
-    BINARY_WORD mask = (1 << position);
-    *bword = *bword | mask;
-}
-
-/** @brief Checks that the bit is set in a binary word */
-int ai2_is_set(BINARY_WORD bword, unsigned int position) {
-    unsigned int position_complement = (BITS_PER_BINARY_WORD - 1) - position;   // number of leading bits before the bit position of interest
-    bword = (bword << position_complement);                                     // zero out leading bits
-    bword = (bword >> (BITS_PER_BINARY_WORD - 1));                              // shift bit position of interest to the 0th position
-    return (bword & 0x1);                                                       // test if bit position of interest is set
-}
-
-void ai2_flt_to_bin(BINARY_WORD *binary_vol, float *real_vol, dim3 dim) {
-    ai2_transpose3D(real_vol, dim); // (x,y,z) -> (z,x,y)
-
-    int sz = dim.x * dim.y * dim.z;
-    for (int i = 0; i < sz; i += BITS_PER_BINARY_WORD) {
-        BINARY_WORD tmp = 0x00000000;
-        for (int x = 0; x < BITS_PER_BINARY_WORD; ++x) {
-            int waddr = x + i;
-            if (signbit(real_vol[waddr]) == 0)
-                ai2_bitset(&tmp, (BITS_PER_BINARY_WORD - 1) - x);
-        }
-        binary_vol[i / BITS_PER_BINARY_WORD] = tmp;
-    }
-}
-
-void ai2_bin_to_flt(float *real_vol, BINARY_WORD *binary_vol, dim3 dim) {   // TODO unit tests
-    for (int z = 0; z < dim.z; z++) {
-        for (int y = 0; y < dim.y; y++) {
-            for (int x = 0; x < dim.x / BITS_PER_BINARY_WORD; x++) {    // TODO boundary checks, for uneven input
-                BINARY_WORD word = binary_vol[z*dim.y*dim.x + y*dim.x + x];
-                for (int t = 0; t < BITS_PER_BINARY_WORD; ++t) {
-                    int oidx = z*dim.y*dim.x + y*dim.x + x * BITS_PER_BINARY_WORD + t;
-                    if (ai2_is_set(word, t))
-                        real_vol[oidx] = 1.f;
-                    else
-                        real_vol[oidx] = -1.f;
-                }
-            }
-        }
-    }
-
-    // Transpose channels back to output
-    ai2_transpose3D(real_vol, dim); // (z,y,x) -> (x,y,z)
-}
-
-/* @brief: input is padded.
- */
-void ai2_bin_conv2D(float *output, const BINARY_WORD *input, const BINARY_WORD *weights, int ix, int iy, int wx, int wy, int pad, int stride) {
-
-    int r, rd, c, cd;
-    int wx_2 = wx / 2;
-    int wy_2 = wy / 2;
-
-    // Indexing for output pixels. x = [wx_2, ix + wx_2 - 1], y = [wy_2, iy + wy_2 - 1]
-    int sx = pad;               // start x
-    int ex = ix + pad - 1;      // end x
-    int sy = pad;               // start y
-    int ey = iy + pad - 1;      // end y
-
-    // Indexing for weights
-    int wsx, wex, wsy, wey;
-    if (wx % 2 == 1) {  // odd weights
-        wsx = -wx_2; wex = wx_2 + 1;
-        wsy = -wy_2; wey = wy_2 + 1;    
-    }
-    else {
-        wsx = -wx_2; wex = wx_2;
-        wsy = -wy_2; wey = wy_2;    
-    }
-
-    int px = ix + 2*pad;
-    //int py = iy + 2*pad;
-
-    for (r = sy; r <= ey; ++r) {
-        for (c = sx; c <= ex; ++c) {
-            int accumulator = 0;
-            for (rd = wsy; rd < wey; ++rd) {
-                for (cd = wsx; cd < wex; ++cd) {
-                    int iidx = (r+rd)*px + (c+cd);
-                    BINARY_WORD pixel = input[iidx];
-                    //BINARY_WORD pixel = 0xFFFFFFFF;
-                    //BINARY_WORD weight = 0xFFFFFFFF;
-                    int widx = (rd + wy_2)*wx + (cd+wx_2);
-                    BINARY_WORD weight = weights[widx];
-                    accumulator += __builtin_popcount(~(pixel ^ weight));
-                }
-            }
-
-            // Padded space
-            int oidx = r*px + c;
-            output[oidx] += (float) accumulator;
-        }
-    }
-
-    //for (r = sy; r <= ey; ++r) {
-    //  for (c = sx; c <= ex; ++c) {
-    //      int accumulator = 0;
-    //      for (rd = -wy_2; rd < wy_2; ++rd) {
-    //          for (cd = -wx_2; cd < wx_2; ++cd) {
-    //              int iidx = (r+rd)*px + (c+cd);
-    //              BINARY_WORD pixel = input[iidx];
-    //              //BINARY_WORD pixel = 0xFFFFFFFF;
-    //              //BINARY_WORD weight = 0xFFFFFFFF;
-    //              int widx = (rd + wy_2)*wx + (cd+wx_2);
-    //              BINARY_WORD weight = weights[widx];
-    //              accumulator += __builtin_popcount(~(pixel ^ weight));
-    //          }
-    //      }
-
-    //      // Padded space
-    //      int oidx = r*px + c;
-    //      output[oidx] += (float) accumulator;
-    //  }
-    //}
-    
-    //ai2_bin_conv_within_boundary(output, input, weights, ix, iy, wx, wy, stride);
-    //ai2_bin_conv_borders(output, input, weights, ix, iy, wx, wy, stride);
-}
-
-void ai2_pointwise_mul_mm(float *output, const float *input, int N) {
-    int i = 0;
-
-    while (i + 8 <= N) {
-        output[i+0] *= input[i+0];
-        output[i+1] *= input[i+1];
-        output[i+2] *= input[i+2];
-        output[i+3] *= input[i+3];
-        output[i+4] *= input[i+4];
-        output[i+5] *= input[i+5];
-        output[i+6] *= input[i+6];
-        output[i+7] *= input[i+7];
-
-        i += 8;
-    }
-
-    while (++i < N) // Finish iteration that's leftover (e.g., last batch not divisible by 8 exactly)
-         output[i] *= input[i];
-}
-
-/** @brief Performs a tiled pointwise matrix multiplication between two 2D tensors
- *  Pre-conditions: wx < ix, and wy < iy
- */
-void ai2_pointwise_mul_mm_2d(float *output, const float *alpha, int ix, int iy, int wx, int wy, int pad) {
-    // Slower version
-//      for (int y = 0; y < iy; ++y) 
-//          for (int x = 0; x < ix; x++)
-//              output[y*ix+x] *= input[(y % wy)*wx + (x % wx)];
-
-    // Stride prefetch optimized
-    for (int s = 0; s < wy; ++s) {  // for each strip
-        const float *strip_ptr = &alpha[s*wx];
-        for (int y = pad; y < pad + (iy / wy); ++y) {   //
-            int stride = y*((ix+2*pad)*wy) + s*(ix+2*pad);
-            float *output_ptr = &output[stride];
-
-            for (int x = 0; x < ix; ++x) {
-                output_ptr[x] *= strip_ptr[x % wx];
-            }
-        }
-    }
-}
-
-void ai2_setFltInput(ai2_bin_conv_layer *layer, float *new_input) {
-    if (new_input != NULL) {
-        if (layer->input != NULL)
-            free(layer->input);
-        layer->input = new_input;
-
-        dim3 dim;
-        dim.x = layer->px;
-        dim.y = layer->py;
-        dim.z = layer->c;
-
-        // Binarize input
-        ai2_flt_to_bin(layer->binary_input, layer->input, dim);
-
-        float *new_beta = (float *) calloc (dim.x * dim.y, sizeof(float));
-        ai2_setFltBeta(layer, new_beta);
-
-        // layer->input is transposed to (z,x,y) already
-        ai2_calc_beta(layer->beta, layer->input, dim);
-    }
-}
-
-void ai2_setBinInput(ai2_bin_conv_layer *layer, BINARY_WORD *new_input) {
-    if (new_input != NULL) {
-        if (layer->binary_input != NULL)
-            free(layer->binary_input);
-        layer->binary_input = new_input;
-    }
-}
-
-void ai2_setFltWeights(ai2_bin_conv_layer *layer, float *new_weights) {
-    if (new_weights != NULL) {
-        if (layer->weights != NULL)
-            free(layer->weights);
-        layer->weights = new_weights;
-
-        dim3 dim;
-        dim.x = layer->wx;
-        dim.y = layer->wy;
-        dim.z = layer->c;
-
-        ai2_flt_to_bin(layer->binary_weights, layer->weights, dim);
-
-        // Calculate alpha
-        if (layer->alpha != NULL)
-            free(layer->alpha);
-
-        layer->alpha = (float *) calloc (dim.x * dim.y, sizeof(float));
-        // layer->weights is already transposed to (z,x,y) from ai2_flt_to_bin()
-        ai2_calc_alpha(layer->alpha, layer->weights, dim);
-    }
-}
-
-void ai2_setBinWeights(ai2_bin_conv_layer *layer, BINARY_WORD *new_weights) {
-    if (new_weights != NULL) {
-        if (layer->binary_weights != NULL)
-            free(layer->binary_weights);
-        layer->binary_weights = new_weights;
-    }
-}
-
-void ai2_setFltOutput(ai2_bin_conv_layer *layer, float *new_output) {
-    if (new_output != NULL) {
-        if (layer->output != NULL)
-            free(layer->output);
-        layer->output = new_output;
-    }
-}
-
-void ai2_setBinOutput(ai2_bin_conv_layer *layer, BINARY_WORD *new_output) {
-    if (new_output != NULL) {
-        if (layer->binary_output != NULL)
-            free(layer->binary_output);
-        layer->binary_output = new_output;
-    }
-}
-
-void ai2_setFltAlpha(ai2_bin_conv_layer *layer, float *new_alpha) {
-    if (new_alpha != NULL) {
-        if (layer->alpha != NULL)
-            free(layer->alpha);
-        layer->alpha = new_alpha;
-    }
-}
-
-void ai2_setFltBeta(ai2_bin_conv_layer *layer, float *new_beta) {
-    if (new_beta != NULL) {
-        if (layer->beta != NULL)
-            free(layer->beta);
-        layer->beta = new_beta;
-    }
-}
-
-void ai2_setFltNewBeta(ai2_bin_conv_layer *layer, float *new_new_beta) {
-    if (new_new_beta != NULL) {
-        if (layer->new_beta != NULL)
-            free(layer->new_beta);
-        layer->new_beta = new_new_beta;
-    }
-}
-
-float* ai2_getFltOutput(ai2_bin_conv_layer *layer) {
-    //if (layer->output != NULL && layer->binary_output != NULL) {
-    if (layer->output != NULL) {
-
-        // The idea here was that all intermediate states are stored in the binary output. 
-        // Whenever the user needs the real-valued output, the conversion happens at this function call.
-        //dim3 dim;
-        //dim.x = layer->px;
-        //dim.y = layer->py;
-        //dim.z = layer->batch;
-        //ai2_bin_to_flt(layer->output, layer->binary_output, dim);
-
-        return layer->output;
-    }
-    else
-        return NULL;
-}
-
-void ai2_transpose3D(float *data, dim3 d) {
-    // Slow transpose for correctness
-
-    // (x,y,z) becomes (z,x,y). Requires two transposes:
-    //  (x,y,z) -> (x,z,y).
-    //  (x,z,y) -> (z,x,y).
-
-    // Intermediate buffer
-    float *new_data = (float *) calloc (d.x * d.y * d.z, sizeof(float));
-
-    // Transpose y and z axis.
-    // (x,y,z) -> (x,z,y);
-    for (int y = 0; y < d.y; ++y) {
-        for (int z = 0; z < d.z; ++z) {
-            for (int x = 0; x < d.x; ++x) {
-                new_data[y*d.x*d.z + z*d.x + x] = data[z*d.x*d.y + y*d.x + x];
-                //new_data[z*d.y*d.x + y*d.x + x] = data[y*d.x*d.z + z*d.x + x];
-            }
-        }
-    }
-
-    // Transpose x and z axis.
-    //  (x,z,y) -> (z,x,y)
-    for (int y = 0; y < d.y; ++y) {
-        for (int x = 0; x < d.x; ++x) {
-            for (int z = 0; z < d.z; ++z) {
-                data[y*d.z*d.x + x*d.z + z] = new_data[y*d.x*d.z + x + z*d.x];
-            }
-        }
-    }
-
-    free(new_data);
-}
-
-int ai2_isFloatWhole(float f) { // TODO unit test
-    return (ceilf(f) == f) ? 1 : 0;
-}
-
-/* @brief Initialize and create all memory arrays for this layer
- * b - batches (number of filter batches)
- * c - input channels
- * ix - input width
- * iy - input height
- * wx - weight/filter width
- * wy - weight/filter height
- * s - stride between sliding windows
- * pad - the amount of padding
- */
-ai2_bin_conv_layer ai2_make_bin_conv_layer(int b, int c, int ix, int iy, int wx, int wy, int s, int pad) {
-    // http://cs231n.github.io/convolutional-networks/
-    //  See: spatial arrangement section for determining what the output size will be
-    float output_size = ((ix - wx + 2 * pad) / s) + 1;
-    if (ai2_isFloatWhole(output_size) == 0) {
-        fprintf(stderr, "ERROR! conv layer of (b,c,ix,iy,s,pad) = (%d, %d, %d, %d, %d, %d) will give "
-            " invalid output dimension: %fx%f\n", b, c, ix, iy, s, pad, output_size, output_size);
-        exit(1);
-    }
-
-    // TODO: Support strided output
-    if (s != 1) {
-        fprintf(stderr, "ERROR! Only stride values of 1 is supported\n");
-        exit(1);
-    }
-
-    // padded input size
-    int px = (int) ix + 2*pad; 
-    int py = (int) iy + 2*pad;
-
-    ai2_bin_conv_layer l = {0}; // initialize all to 0
-    l.input = (float *) calloc (c * px * py, sizeof(float));        // is padded
-    l.binary_input =   (BINARY_WORD *) calloc (c * px * py / BITS_PER_BINARY_WORD, sizeof(BINARY_WORD));     // is padded
-
-    dim3 dim;
-    dim.x = px;
-    dim.y = py;
-    dim.z = c;
-    ai2_flt_to_bin(l.binary_input, l.input, dim);
-
-    l.weights = (float *) calloc (b * c * wx * wy, sizeof(float));  
-    l.binary_weights = (BINARY_WORD *) calloc (b * c * wx * wy / BITS_PER_BINARY_WORD, sizeof(BINARY_WORD));
-
-    l.output = (float *) calloc (c * px * py, sizeof(float));   // is padded
-    l.new_beta = (float *) calloc(px * py, sizeof(float));      // is padded
-
-    l.batch = b;
-    l.c = c;
-    l.h = iy;
-    l.w = ix;
-    l.stride = s;
-    l.pad = pad;
-    l.px = px;
-    l.py = py;
-    l.wx = wx;
-    l.wy = wy;
-
-    // The following parameters are uninitialized and should be set elsewhere:
-    //  l.beta  - padded
-    //  l.alpha - not padded
-
-    return l;
-}
-
-void ai2_free_bin_conv_layer(ai2_bin_conv_layer *layer) {
-    if (layer->input) free (layer->input);
-    if (layer->binary_input) free(layer->binary_input);
-    if (layer->weights) free (layer->weights);
-    if (layer->binary_weights) free(layer->binary_weights);
-    if (layer->output) free(layer->output);
-    if (layer->binary_output) free (layer->binary_output);
-    if (layer->alpha) free(layer->alpha);
-    if (layer->beta) free(layer->beta);
-    if (layer->new_beta) free(layer->new_beta);
-}
-
-void ai2_throw_error(char *str) {
-    fprintf(stderr, "ERROR: %s\n", str);
-    exit(1);
-}
-
-void ai2_bin_forward(ai2_bin_conv_layer *l) {
-    if (l->input == NULL) ai2_throw_error("Input was not allocated and set in this layer");
-    if (l->weights == NULL) ai2_throw_error("Weights was not allocated and set in this layer");
-    if (l->output == NULL) ai2_throw_error("Output was not allocated and set in this layer");
-    if (l->alpha == NULL) ai2_throw_error("Alpha was not allocated and set in this layer");
-    if (l->beta == NULL) ai2_throw_error("Beta was not allocated and set in this layer");
-
-    if (l->c % 32 != 0) ai2_throw_error("Channel is not divisible by 32. Need to implement mask "
-                                        "before supporting arbitrary channel size. For now, "
-                                        "set the channel size to the nearest multiple of 32 "
-                                        "and ignore any ''extra'' channels unused.");
-
-    l->c /= BITS_PER_BINARY_WORD;   // For compensating with doing more work per word
-
-    float *output = l->output;
-    float *alpha = l->alpha;
-    float *beta = l->beta;
-    int px = l->px;
-    int py = l->py;
-    BINARY_WORD *binary_weights = l->binary_weights;
-
-    for (int z = 0; z < l->batch; ++z) {    // for each filter map
-        BINARY_WORD *binary_input = l->binary_input;
-        for (int c = 0; c < l->c; ++c) {    // for each input channel
-            ai2_bin_conv2D(output, binary_input, binary_weights, l->w, l->h, l->wx, l->wy, l->pad, l->stride);
-            binary_input += px*py;   // increment with next 2D plane
-            binary_weights += l->wx*l->wy;       // increment with next 2D plane
-
-            ai2_pointwise_mul_mm(output, beta, px*py);  
-            ai2_pointwise_mul_mm_2d(output, alpha, l->w, l->h, l->wx, l->wy, l->pad);
-        }
-    }
-}
-
-// Deprecated
-//double ai2_bin_conv_benchmark(ConvolutionArgs conv_args) {
-//    printf("Running Binary Convolution test!\n");
-//
-//    size_t ix, iy, iz, wx, wy, wz, L, stride;
-//    ix = conv_args.input.x;
-//    iy = conv_args.input.y;
-//    iz = conv_args.input.z;
-//    wx = conv_args.weights.x;
-//    wy = conv_args.weights.y;
-//    wz = conv_args.weights.z;
-//  L = BITS_PER_BINARY_WORD;
-//  stride = 1;
-//
-//    printf("Input size (num elements, xyz): %zu %zu %zu\n", ix, iy, iz);
-//    printf("Weights size (num elements. xyz): %zu %zu %zu\n", wx, wy, wz);
-//
-//    double sz_input_elements = ix * iy * iz;
-//    double sz_input_bytes = getSizeBytesBinaryArray(conv_args.input);
-//    double sz_weight_bytes = getSizeBytesBinaryArray(conv_args.weights);
-//
-//    printf("Input Size (MB): %f\n", sz_input_bytes / (1 << 20));
-//    printf("Weight Size (MB): %f\n", sz_weight_bytes / (1 << 20));
-//
-//    BINARY_WORD *binary_input = mallocBinaryVolume(conv_args.input);
-//    BINARY_WORD *binary_weights = mallocBinaryVolume(conv_args.weights);
-//    BINARY_WORD *b_input = binary_input;    // alias
-//    BINARY_WORD *b_weight = binary_weights; // alias
-//    float *output = mallocFloatVolume(conv_args.output);
-//  float *output_ptr = output;
-//  float *beta =  (float *) malloc(sizeof(float) * ix * iy);   // we assume beta is given to us
-//  float *alpha = (float *) malloc(sizeof(float) * wx * wy);   // we assume alpha is given to us
-//  float *new_output = mallocFloatVolume(conv_args.output);
-//  //float *new_output_ptr = new_output;
-//  float *new_beta = (float *) malloc(sizeof(float) * ix * iy);
-//  //float *new_beta_ptr = new_beta;
-//
-//    // Scale number of computations because we're packing.
-//    // After this point, you should not have to reason about input dimensions for input and weights.
-//    iz /= BITS_PER_BINARY_WORD;
-//    wz /= BITS_PER_BINARY_WORD;
-//
-//    // Calculate time taken by a request
-//    struct timeval start_time;
-//    gettimeofday(&start_time, NULL);
-//
-//  // Preprocessing
-//  int pad = wx/2;
-//
-//    for (int z = 0; z < iz; ++z) {    // number of channels
-//        ai2_bin_conv2D(output_ptr, b_input, b_weight, ix, iy, wx, wy, pad, stride);
-//        b_input += ix*iy;   // increment with next 2D plane
-//        b_weight += wx*wy;  // increment with next 2D plane
-//
-//      ai2_pointwise_mul_mm(output_ptr, beta, ix*iy);
-//      ai2_pointwise_mul_mm_2d(output_ptr, alpha, ix, iy, wx, wy, pad);
-//    }
-//
-//  // copy to new array (need to wrap this around); TODO.
-//    struct timeval end_time;
-//    gettimeofday(&end_time, NULL);
-//
-//    struct timeval diff_time;
-//    timersub(&end_time, &start_time, &diff_time);
-//    double time_conv_s = diff_time.tv_sec + diff_time.tv_usec * 1e-6;
-//    double time_conv_ms = time_conv_s * 1000.0;
-//
-//  double model_ops = (3*ix*iy*wx*wy*wz/L) + 2*ix*iy + ix*iy*iz;
-//  double conv_ops_s = 1e-9 * model_ops / time_conv_s;
-//    double conv_bandwidth_gb_s = 1e-9 * sz_input_bytes / (time_conv_ms / 1000.0);
-//    double conv_bandwidth_gelement_s = 1e-9 * sz_input_elements / (time_conv_ms / 1000.0);
-//
-//    printf("Execution Time (ms): %f\n", time_conv_ms);
-//    printf("Binary Convolution OPS/s (GOPS/s): %f\n", conv_ops_s);
-//    printf("Binary Convolution Bandwidth (GB/s): %f\n", conv_bandwidth_gb_s);
-//    printf("Binary Convolution Bandwidth (GElements/s): %f\n\n", conv_bandwidth_gelement_s);
-//
-//    free(binary_input);
-//    free(binary_weights);
-//    free(output);
-//  free(beta);
-//  free(alpha);
-//  free(new_output);
-//  free(new_beta);
-//
-//    return time_conv_ms;
-//}
-
-// double ai2_bin_conv_benchmark(ConvolutionArgs conv_args);
-
-//void benchmark() {
-//    int ix, iy, iz, wx, wy, wz;
-//    iz = (1 << 9) * BITS_PER_BINARY_WORD;
-//    ix = 227; // x == y for square face
-//    iy = 227;
-//    wx = 3;    // x == y for a square face
-//    wy = 3;
-//    wz = iz;
-//
-//  int runs = 1;
-//  double accum_binary = 0;
-//  double accum_real = 0;
-//    ConvolutionArgs conv_args = initArgs(ix, iy, iz, wx, wy, wz);
-//  for (int i = 0; i < runs; ++i) {
-//      double t_binary_convolve = ai2_bin_conv_benchmark(conv_args);
-//      double t_real_convolve = run_convolve2D_real(conv_args);
-//      printf("t binary = %lf\n", t_binary_convolve);
-//      printf("t real = %lf\n", t_real_convolve);
-//      accum_binary += t_binary_convolve;
-//      accum_real += t_real_convolve;
-//  }
-//
-//  accum_binary /= runs;
-//  accum_real /= runs;
-//  printf("Average convolution pass binary (ms): %lf\n", accum_binary);
-//  printf("Average convolution pass flt (ms): %lf\n", accum_real);
-//  printf("Speedup (Binary over Real): %lfx\n", accum_real / accum_binary);    
-//  exit(1);
-//}
diff --git a/src/binary_convolution.h b/src/binary_convolution.h
deleted file mode 100644
index 602677e..0000000
--- a/src/binary_convolution.h
+++ /dev/null
@@ -1,218 +0,0 @@
-#ifndef AI2_BINARY_CONVOLUTION_H
-#define AI2_BINARY_CONVOLUTION_H
-
-/** @file binary_convolution.h
- *  @brief Routines related for approximating convolutions using binary operations
- *      
- *  @author Carlo C. del Mundo (carlom)
- *  @date 05/23/2016
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <inttypes.h>
-#include <assert.h>
-#include <limits.h>
-#include <tgmath.h>
-#include <unistd.h>
-#include <stdint.h>
-#include <string.h>
-#include "common.h"
-
-typedef struct {
-    int batch;   // number of filter batches
-    int c;       // channels, z
-    int h;       // height, y
-    int w;       // width, x
-    int stride;
-    int pad;
-
-    int px;     // padded x (use this for striding in padded input and output arrays)
-    int py;     // padded y (use this for striding in padded input and output arrays)
-    int wx;
-    int wy;
-
-    float *input;       // input values
-    BINARY_WORD *binary_input;
-
-    float *weights;     // weight or filter values
-    BINARY_WORD *binary_weights;
-
-    float *output;      // output values
-    BINARY_WORD *binary_output;
-
-    float *alpha;       // we assume alpha is calculated at the beginning of initialization
-    float *beta;        // we assume beta is given to us
-    float *new_beta;    // we calculate the new beta for the next layer
-
-    struct ai2_bin_conv_layer *next;
-} ai2_bin_conv_layer;
-
-/** @brief Performs a binary convolution using XNOR and POPCOUNT between input and weights
- *
- *  @param output A 2D real-valued plane to store the outputs
- *  @param input A 2D binary-valued plane that holds the inputs
- *  @param weights A 2D binary-valued plane that holds the weights 
- *  @param ix   the input's x dimension 
- *  @param iy   the input's y dimensions
- *  @param wx   the weight's x dimension
- *  @param wy   the weight's y dimension
- *  @param pad  the amount of padding applied to input. (ix+2*pad is the x dimension of the input
- *  @param stride NOP. TODO: implement stride. the stride between sliding windows
- *  @return the count of all overlapping set bits between the two volumes.
- */
-void ai2_bin_conv2D(float *output, const BINARY_WORD *input, const BINARY_WORD *weights, int ix, int iy, int wx, int wy, int pad, int stride);
-
-/** @brief Performs a binary dot product (XNOR and POPCOUNT) for two equal sized volumes.
- *
- *  @param a A 3D binary tensor
- *  @param b A 3D binary tensor 
- *  @param vdim the dimensionality of the data. Note: we pack 32 elements in the Z element.
- *  @return the count of all overlapping set bits between the two volumes.
- */
-int ai2_bin_dp(BINARY_WORD *a, BINARY_WORD *b, dim3 vdim);
-
-/** @brief Calculates the alpha plane given an alpha volume. 
- *
- *  Each point in the yz alpha plane
- *  is the average sum of the absolute value of all elements in the z-direction.
- *
- * Pre-conditions: 
- *                  alpha_volume is an array of size x*y*z.
- *                  alpha_plane is an array of size x*y.
- *                  alpha_volume (x,y,z) is transposed to (z,x,y).
- *
- *  @param alpha_plane The 2D real-valued output plane
- *  @param alpha_volume The 3D real-valued output volume
- *  @param vdim the dimensionality of alpha_volume.
- */
-void ai2_calc_alpha(float *alpha_plane, float *alpha_volume, dim3 vdim);
-
-/** @brief Wrapper function for generating the beta scaling factor */
-void ai2_calc_beta(float *beta_plane, float *beta_volume, dim3 vdim); 
-
-/** @brief Set the bit in a binary word */
-void ai2_bitset(BINARY_WORD *bword, unsigned int position);
-
-/** @brief Checks that the bit is set in a binary word */
-int ai2_is_set(BINARY_WORD bword, unsigned int position) ;
-
-/** @brief Converts a 3D float tensor into a 3D binary tensor.
- *
- *  The value of the ith element in the binary tensor is the sign
- *  of the ith element in the floating tensor.
- *
- *  @param binary_vol the binary tensor
- *  @param real_vol the real tensor
- *  @param vdim the size of the 3D tensor
- */
-void ai2_flt_to_bin(BINARY_WORD *binary_vol, float *real_vol, dim3 vdim) ;
-
-/** @brief Converts a 3D binary tensor into a 3D float tensor.
- *
- * The ith float element will be '1' if the ith binary element is '1'.
- * Otherwise, the float element will be '-1'.
- *
- *  @param real_vol the output real tensor
- *  @param binary_vol the input binary tensor
- *  @param vdim the dimension of both binary_vol and real_vol
- */
-void ai2_bin_to_flt(float *real_vol, BINARY_WORD *binary_vol, dim3 vdim); 
-
-/** @brief Performs a pointwise matrix multication between two 2D tensors
- *  @param output A 2D real-valued plane to store the outputs
- *  @param input A 2D binary-valued plane that holds the inputs
- *  @param N the number of elements between the arrays
- */
-void ai2_pointwise_mul_mm(float *output, const float *input, int N);
-
-/** @brief Performs a tiled pointwise matrix multiplication between two 2D tensors
- *  
- *  Pre-conditions: wx < ix, and wy < iy
- *
- *  @param output A 2D real-valued plane of size ix, iy
- *  @param alpha A 2D binary-valued plane of size wx, wy
- *  @param ix   the output's x dimension 
- *  @param iy   the output's y dimensions
- *  @param wx   the alpha's x dimension
- *  @param wy   the alpha's y dimension
- *  @param pad  how many cells are padded, adds 2*pad to the borders of the image 
- */
-void ai2_pointwise_mul_mm_2d(float *output, const float *alpha, int ix, int iy, int wx, int wy, int pad);
-
-// --------------------------------------
-//  SETTER FUNCTIONS
-// --------------------------------------
-/** @brief Safe function to set the float input of a conv_layer
- */
-void ai2_setFltInput(ai2_bin_conv_layer *layer, float *new_input);
-
-/** @brief Safe function to set the binary input of a conv_layer
- */
-void ai2_setBinInput(ai2_bin_conv_layer *layer, BINARY_WORD *new_input);
-
-/** @brief Safe function to set the binary weights of a conv_layer
- */
-void ai2_setFltWeights(ai2_bin_conv_layer *layer, float *new_weights);
-
-/** @brief Safe function to set the binary weights of a conv_layer
- */
-void ai2_setBinWeights(ai2_bin_conv_layer *layer, BINARY_WORD *new_weights);
-
-/** @brief Safe function to set the binary outputs of a conv_layer
- */
-void ai2_setFltOutput(ai2_bin_conv_layer *layer, float *new_output);
-
-/** @brief Safe function to set the binary outputs of a conv_layer
- */
-void ai2_setBinOutput(ai2_bin_conv_layer *layer, BINARY_WORD *new_output);
-
-/** @brief Safe function to set the alpha of a conv_layer
- */
-void ai2_setFltAlpha(ai2_bin_conv_layer *layer, float *new_alpha);
-
-/** @brief Safe function to set the beta of a conv_layer
- */
-void ai2_setFltBeta(ai2_bin_conv_layer *layer, float *new_beta);
-
-/** @brief Safe function to set the new_beta of a conv_layer
- */
-void ai2_setFltNewBeta(ai2_bin_conv_layer *layer, float *new_new_beta);
-
-// --------------------------------------
-//  GETTER FUNCTIONS
-// --------------------------------------
-/** @brief Safe function to get the float outputs of a conv_layer
- */
-float * ai2_getFltOutput(ai2_bin_conv_layer *layer);
-
-/** @brief 3D tranpose from (x,y,z) to (z,y,x)
- *  @return a new pointer with the transposed matrix
- */
-void ai2_transpose3D(float *data, dim3 d);
-
-/** @brief Checks if a float is a whole number (e.g., an int)
- */
-int ai2_isFloatWhole(float f);
-
-/* @brief Allocates all memory objects in an ai2_bin_conv_layer
- * b - batches (number of filter batches)
- * c - input channels
- * ix - input width
- * iy - input height
- * wx - weight/filter width
- * wy - weight/filter height
- * s - stride between sliding windows
- * pad - the amount of padding
- */
-ai2_bin_conv_layer ai2_make_bin_conv_layer(int b, int c, int ix, int iy, int wx, int wy, int s, int pad);
-
-/* @brief Safe deallocation of  all memory objects in an ai2_bin_conv_layer
- */
-void ai2_free_bin_conv_layer(ai2_bin_conv_layer *layer);
-
-/* @brief Given real-valued filter data and a conv layer, performs a forward pass
- */
-void ai2_bin_forward(ai2_bin_conv_layer *layer);
-
-#endif
diff --git a/src/common.c b/src/common.c
deleted file mode 100644
index 9d59ee8..0000000
--- a/src/common.c
+++ /dev/null
@@ -1,81 +0,0 @@
-#include "common.h" 
-
-// Returns the time in ms
-double getElapsedTime(Timer *timer) {
-    // Calculate time it took in seconds
-    double accum_ms = ( timer->requestEnd.tv_sec - timer->requestStart.tv_sec )
-      + ( timer->requestEnd.tv_nsec - timer->requestStart.tv_nsec )
-      / 1e6;
-    return accum_ms;
-}
-
-void start_timer(Timer *timer) {
-    clock_gettime(CLOCK_MONOTONIC_RAW, &(timer->requestStart));
-}
-
-void stop_timer(Timer *timer) {
-    clock_gettime(CLOCK_MONOTONIC_RAW, &(timer->requestEnd));
-}
-
-
-BINARY_WORD * mallocBinaryVolume(dim3 vol) {
-    return (BINARY_WORD *) malloc (vol.x * vol.y * vol.z / BITS_PER_BINARY_WORD * sizeof(BINARY_WORD));
-}
-
-float * mallocFloatVolume(dim3 vol) {
-    return (float *) malloc (vol.x * vol.y * vol.z * sizeof(float));
-}
-
-// Returns the size (in bytes) of a binary array with dimensions stored in conv_args
-double getSizeBytesBinaryArray(dim3 conv_args) {
-    return conv_args.x * conv_args.y * conv_args.z * sizeof(BINARY_WORD) / (BITS_PER_BINARY_WORD);
-}
-
-
-ConvolutionArgs initArgs(size_t ix, size_t iy, size_t iz, size_t wx, size_t wy, size_t wz) {
-    ConvolutionArgs conv_args;
-    // Input Volume
-    conv_args.input.x = ix;    // x == y for a square face
-    conv_args.input.y = iy;
-    conv_args.input.z = iz;
-    conv_args.weights.x = wx; // x == y for square face
-    conv_args.weights.y = wy;
-    conv_args.weights.z = wz;
-
-    // <!-- DO NOT MODIFY -->
-    // Intermediate Volumes
-    conv_args.alpha_plane.x = conv_args.weights.x;
-    conv_args.alpha_plane.y = conv_args.weights.y;
-    conv_args.alpha_plane.z = 1;
-
-    conv_args.beta_plane.x = 1;
-    conv_args.beta_plane.y = conv_args.input.y;
-    conv_args.beta_plane.z = conv_args.input.z;
-
-    conv_args.gamma_plane.x = conv_args.input.x * conv_args.weights.x;
-    conv_args.gamma_plane.y = conv_args.input.y * conv_args.weights.y;
-    conv_args.gamma_plane.z = 1;
-
-    conv_args.zeta_plane.x = conv_args.gamma_plane.x;
-    conv_args.zeta_plane.y = conv_args.gamma_plane.y;
-    conv_args.zeta_plane.z = 1;
-
-    // Output Volume
-    conv_args.output.x = conv_args.input.x;
-    conv_args.output.y = conv_args.input.y;
-    conv_args.output.z = 1; // Output should be a 2D plane
-
-    // Verify dimensions
-    //assert(conv_args.weights.x % 32 == 0);  // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
-//    assert(conv_args.weights.y % 32 == 0);  // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
-	assert(conv_args.weights.z % 32 == 0);  // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
-    //assert(conv_args.input.x % 32 == 0);    // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
-//    assert(conv_args.input.y % 32 == 0);    // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
-    assert(conv_args.input.z % 32 == 0);    // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
-    assert(conv_args.weights.x <= conv_args.input.x);
-    assert(conv_args.weights.y <= conv_args.input.y);
-    assert(conv_args.weights.z <= conv_args.input.z);
-    // <!-- DO NOT MODIFY -->
-
-    return conv_args;
-}
diff --git a/src/common.h b/src/common.h
deleted file mode 100644
index bad428d..0000000
--- a/src/common.h
+++ /dev/null
@@ -1,50 +0,0 @@
-#ifndef AI2_COMMON_H 
-#define AI2_COMMON_H
-
-#include <time.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <inttypes.h>
-#include <assert.h>
-#include <limits.h>
-#include <tgmath.h>
-#include <unistd.h>
-#include <stdint.h>
-//#include <gperftools/profiler.h>
-#include <sys/time.h>
-
-typedef uint32_t BINARY_WORD;
-#define BITS_PER_BINARY_WORD (sizeof(BINARY_WORD) * CHAR_BIT)
-
-typedef struct{
-    struct timespec requestStart;
-    struct timespec requestEnd;
-} Timer;
-
-typedef struct {
-	size_t x;
-	size_t y;
-	size_t z;
-} dim3;
-
-typedef struct {
-	dim3 weights;
-	dim3 input;
-    dim3 output;
-    dim3 alpha_plane;
-    dim3 beta_plane;
-    dim3 gamma_plane;
-    dim3 zeta_plane;
-} ConvolutionArgs;
-
-// Timer stuff
-double getElapsedTime(Timer *timer); // Returns the time in ms
-void start_timer(Timer *timer);
-void stop_timer(Timer *timer);
-
-BINARY_WORD * mallocBinaryVolume(dim3 vol);
-float * mallocFloatVolume(dim3 vol);
-ConvolutionArgs initArgs(size_t ix, size_t iy, size_t iz, size_t wx, size_t wy, size_t wz);
-double getSizeBytesBinaryArray(dim3 conv_args);
-
-#endif
-- 
GitLab