From 2afa376bb37b379f27954f74859fbfa63402ea46 Mon Sep 17 00:00:00 2001 From: Joseph Redmon <pjreddie@gmail.com> Date: Fri, 14 Aug 2015 11:45:11 -0700 Subject: [PATCH] single shot yolo training, separate file --- Makefile | 2 +- cfg/yolo.cfg | 2 +- src/darknet.c | 3 + src/yolo.c | 324 ++++++++++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 329 insertions(+), 2 deletions(-) create mode 100644 src/yolo.c diff --git a/Makefile b/Makefile index ee20684..556f2a4 100644 --- a/Makefile +++ b/Makefile @@ -34,7 +34,7 @@ CFLAGS+= -DGPU LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand endif -OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o +OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o ifeq ($(GPU), 1) OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o endif diff --git a/cfg/yolo.cfg b/cfg/yolo.cfg index ba44c4d..eef0b69 100644 --- a/cfg/yolo.cfg +++ b/cfg/yolo.cfg @@ -1,6 +1,6 @@ [net] batch=64 -subdivisions=2 +subdivisions=64 height=448 width=448 channels=3 diff --git a/src/darknet.c b/src/darknet.c index 0b69f40..bd56b80 100644 --- a/src/darknet.c +++ b/src/darknet.c @@ -12,6 +12,7 @@ extern void run_imagenet(int argc, char **argv); extern void run_detection(int argc, char **argv); +extern void run_yolo(int argc, char **argv); extern void run_coco(int argc, char **argv); extern void run_writing(int argc, char **argv); extern void run_captcha(int argc, char **argv); @@ -115,6 +116,8 @@ int main(int argc, char **argv) run_imagenet(argc, argv); } else if (0 == strcmp(argv[1], "detection")){ run_detection(argc, argv); + } else if (0 == strcmp(argv[1], "yolo")){ + run_yolo(argc, argv); } else if (0 == strcmp(argv[1], "coco")){ run_coco(argc, argv); } else if (0 == strcmp(argv[1], "dice")){ diff --git a/src/yolo.c b/src/yolo.c new file mode 100644 index 0000000..5ad9534 --- /dev/null +++ b/src/yolo.c @@ -0,0 +1,324 @@ +#include "network.h" +#include "detection_layer.h" +#include "cost_layer.h" +#include "utils.h" +#include "parser.h" +#include "box.h" + +#ifdef OPENCV +#include "opencv2/highgui/highgui_c.h" +#endif + +char *voc_class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; + +void draw_yolo(image im, float *box, int side, int objectness, char *label, float thresh) +{ + int classes = 20; + int elems = 4+classes+objectness; + int j; + int r, c; + + for(r = 0; r < side; ++r){ + for(c = 0; c < side; ++c){ + j = (r*side + c) * elems; + float scale = 1; + if(objectness) scale = 1 - box[j++]; + int class = max_index(box+j, classes); + if(scale * box[j+class] > thresh){ + int width = sqrt(scale*box[j+class])*5 + 1; + printf("%f %s\n", scale * box[j+class], voc_class_names[class]); + float red = get_color(0,class,classes); + float green = get_color(1,class,classes); + float blue = get_color(2,class,classes); + + j += classes; + float x = box[j+0]; + float y = box[j+1]; + x = (x+c)/side; + y = (y+r)/side; + float w = box[j+2]; //*maxwidth; + float h = box[j+3]; //*maxheight; + h = h*h; + w = w*w; + + int left = (x-w/2)*im.w; + int right = (x+w/2)*im.w; + int top = (y-h/2)*im.h; + int bot = (y+h/2)*im.h; + draw_box_width(im, left, top, right, bot, width, red, green, blue); + } + } + } + show_image(im, label); +} + +void train_yolo(char *cfgfile, char *weightfile) +{ + char *train_images = "/home/pjreddie/data/voc/test/train.txt"; + char *backup_directory = "/home/pjreddie/backup/"; + srand(time(0)); + data_seed = time(0); + char *base = basecfg(cfgfile); + printf("%s\n", base); + float avg_loss = -1; + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + detection_layer layer = get_network_detection_layer(net); + printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); + int imgs = 128; + int i = net.seen/imgs; + + char **paths; + list *plist = get_paths(train_images); + int N = plist->size; + paths = (char **)list_to_array(plist); + + if(i*imgs > N*80){ + net.layers[net.n-1].joint = 1; + net.layers[net.n-1].objectness = 0; + } + if(i*imgs > N*120){ + net.layers[net.n-1].rescore = 1; + } + data train, buffer; + + int classes = layer.classes; + int background = layer.objectness; + int side = sqrt(get_detection_layer_locations(layer)); + + pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); + clock_t time; + while(i*imgs < N*130){ + i += 1; + time=clock(); + pthread_join(load_thread, 0); + train = buffer; + load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); + + printf("Loaded: %lf seconds\n", sec(clock()-time)); + time=clock(); + float loss = train_network(net, train); + net.seen += imgs; + if (avg_loss < 0) avg_loss = loss; + avg_loss = avg_loss*.9 + loss*.1; + + printf("%d: %f, %f avg, %lf seconds, %d images, epoch: %f\n", i, loss, avg_loss, sec(clock()-time), i*imgs, ((float)i)*imgs/N); + + if((i-1)*imgs <= N && i*imgs > N){ + fprintf(stderr, "First stage done\n"); + net.learning_rate *= 10; + char buff[256]; + sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base); + save_weights(net, buff); + } + + if((i-1)*imgs <= 80*N && i*imgs > N*80){ + fprintf(stderr, "Second stage done.\n"); + net.learning_rate *= .1; + char buff[256]; + sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base); + save_weights(net, buff); + net.layers[net.n-1].joint = 1; + net.layers[net.n-1].objectness = 0; + background = 0; + + pthread_join(load_thread, 0); + free_data(buffer); + load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); + } + + if((i-1)*imgs <= 120*N && i*imgs > N*120){ + fprintf(stderr, "Third stage done.\n"); + char buff[256]; + sprintf(buff, "%s/%s_final.weights", backup_directory, base); + net.layers[net.n-1].rescore = 1; + save_weights(net, buff); + } + + if(i%1000==0){ + char buff[256]; + sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); + save_weights(net, buff); + } + free_data(train); + } + char buff[256]; + sprintf(buff, "%s/%s_rescore.weights", backup_directory, base); + save_weights(net, buff); +} + +void convert_yolo_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes) +{ + int i,j; + int per_box = 4+classes+(background || objectness); + for (i = 0; i < num_boxes*num_boxes; ++i){ + float scale = 1; + if(objectness) scale = 1-predictions[i*per_box]; + int offset = i*per_box+(background||objectness); + for(j = 0; j < classes; ++j){ + float prob = scale*predictions[offset+j]; + probs[i][j] = (prob > thresh) ? prob : 0; + } + int row = i / num_boxes; + int col = i % num_boxes; + offset += classes; + boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w; + boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h; + boxes[i].w = pow(predictions[offset + 2], 2) * w; + boxes[i].h = pow(predictions[offset + 3], 2) * h; + } +} + +void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) +{ + int i, j; + for(i = 0; i < num_boxes*num_boxes; ++i){ + float xmin = boxes[i].x - boxes[i].w/2.; + float xmax = boxes[i].x + boxes[i].w/2.; + float ymin = boxes[i].y - boxes[i].h/2.; + float ymax = boxes[i].y + boxes[i].h/2.; + + if (xmin < 0) xmin = 0; + if (ymin < 0) ymin = 0; + if (xmax > w) xmax = w; + if (ymax > h) ymax = h; + + for(j = 0; j < classes; ++j){ + if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], + xmin, ymin, xmax, ymax); + } + } +} + +void validate_yolo(char *cfgfile, char *weightfile) +{ + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + set_batch_network(&net, 1); + detection_layer layer = get_network_detection_layer(net); + fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); + srand(time(0)); + + char *base = "results/comp4_det_test_"; + list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); + char **paths = (char **)list_to_array(plist); + + int classes = layer.classes; + int objectness = layer.objectness; + int background = layer.background; + int num_boxes = sqrt(get_detection_layer_locations(layer)); + + int j; + FILE **fps = calloc(classes, sizeof(FILE *)); + for(j = 0; j < classes; ++j){ + char buff[1024]; + snprintf(buff, 1024, "%s%s.txt", base, voc_class_names[j]); + fps[j] = fopen(buff, "w"); + } + box *boxes = calloc(num_boxes*num_boxes, sizeof(box)); + float **probs = calloc(num_boxes*num_boxes, sizeof(float *)); + for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *)); + + int m = plist->size; + int i=0; + int t; + + float thresh = .001; + int nms = 1; + float iou_thresh = .5; + + int nthreads = 8; + image *val = calloc(nthreads, sizeof(image)); + image *val_resized = calloc(nthreads, sizeof(image)); + image *buf = calloc(nthreads, sizeof(image)); + image *buf_resized = calloc(nthreads, sizeof(image)); + pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); + for(t = 0; t < nthreads; ++t){ + thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h); + } + time_t start = time(0); + for(i = nthreads; i < m+nthreads; i += nthreads){ + fprintf(stderr, "%d\n", i); + for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ + pthread_join(thr[t], 0); + val[t] = buf[t]; + val_resized[t] = buf_resized[t]; + } + for(t = 0; t < nthreads && i+t < m; ++t){ + thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h); + } + for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ + char *path = paths[i+t-nthreads]; + char *id = basecfg(path); + float *X = val_resized[t].data; + float *predictions = network_predict(net, X); + int w = val[t].w; + int h = val[t].h; + convert_yolo_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes); + if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh); + print_yolo_detections(fps, id, boxes, probs, num_boxes, classes, w, h); + free(id); + free_image(val[t]); + free_image(val_resized[t]); + } + } + fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); +} + +void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh) +{ + + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + detection_layer layer = get_network_detection_layer(net); + set_batch_network(&net, 1); + srand(2222222); + clock_t time; + char input[256]; + while(1){ + if(filename){ + strncpy(input, filename, 256); + } else { + printf("Enter Image Path: "); + fflush(stdout); + fgets(input, 256, stdin); + strtok(input, "\n"); + } + image im = load_image_color(input,0,0); + image sized = resize_image(im, net.w, net.h); + float *X = sized.data; + time=clock(); + float *predictions = network_predict(net, X); + printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); + draw_yolo(im, predictions, 7, layer.objectness, "predictions", thresh); + free_image(im); + free_image(sized); +#ifdef OPENCV + cvWaitKey(0); + cvDestroyAllWindows(); +#endif + if (filename) break; + } +} + +void run_yolo(int argc, char **argv) +{ + float thresh = find_float_arg(argc, argv, "-thresh", .2); + if(argc < 4){ + fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); + return; + } + + char *cfg = argv[3]; + char *weights = (argc > 4) ? argv[4] : 0; + char *filename = (argc > 5) ? argv[5]: 0; + if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh); + else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights); + else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights); +} -- GitLab