From 2afa376bb37b379f27954f74859fbfa63402ea46 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 14 Aug 2015 11:45:11 -0700
Subject: [PATCH] single shot yolo training, separate file

---
 Makefile      |   2 +-
 cfg/yolo.cfg  |   2 +-
 src/darknet.c |   3 +
 src/yolo.c    | 324 ++++++++++++++++++++++++++++++++++++++++++++++++++
 4 files changed, 329 insertions(+), 2 deletions(-)
 create mode 100644 src/yolo.c

diff --git a/Makefile b/Makefile
index ee20684..556f2a4 100644
--- a/Makefile
+++ b/Makefile
@@ -34,7 +34,7 @@ CFLAGS+= -DGPU
 LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
 endif
 
-OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o
+OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o
 ifeq ($(GPU), 1) 
 OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
 endif
diff --git a/cfg/yolo.cfg b/cfg/yolo.cfg
index ba44c4d..eef0b69 100644
--- a/cfg/yolo.cfg
+++ b/cfg/yolo.cfg
@@ -1,6 +1,6 @@
 [net]
 batch=64
-subdivisions=2
+subdivisions=64
 height=448
 width=448
 channels=3
diff --git a/src/darknet.c b/src/darknet.c
index 0b69f40..bd56b80 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -12,6 +12,7 @@
 
 extern void run_imagenet(int argc, char **argv);
 extern void run_detection(int argc, char **argv);
+extern void run_yolo(int argc, char **argv);
 extern void run_coco(int argc, char **argv);
 extern void run_writing(int argc, char **argv);
 extern void run_captcha(int argc, char **argv);
@@ -115,6 +116,8 @@ int main(int argc, char **argv)
         run_imagenet(argc, argv);
     } else if (0 == strcmp(argv[1], "detection")){
         run_detection(argc, argv);
+    } else if (0 == strcmp(argv[1], "yolo")){
+        run_yolo(argc, argv);
     } else if (0 == strcmp(argv[1], "coco")){
         run_coco(argc, argv);
     } else if (0 == strcmp(argv[1], "dice")){
diff --git a/src/yolo.c b/src/yolo.c
new file mode 100644
index 0000000..5ad9534
--- /dev/null
+++ b/src/yolo.c
@@ -0,0 +1,324 @@
+#include "network.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+#include "box.h"
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
+char *voc_class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
+
+void draw_yolo(image im, float *box, int side, int objectness, char *label, float thresh)
+{
+    int classes = 20;
+    int elems = 4+classes+objectness;
+    int j;
+    int r, c;
+
+    for(r = 0; r < side; ++r){
+        for(c = 0; c < side; ++c){
+            j = (r*side + c) * elems;
+            float scale = 1;
+            if(objectness) scale = 1 - box[j++];
+            int class = max_index(box+j, classes);
+            if(scale * box[j+class] > thresh){
+                int width = sqrt(scale*box[j+class])*5 + 1;
+                printf("%f %s\n", scale * box[j+class], voc_class_names[class]);
+                float red = get_color(0,class,classes);
+                float green = get_color(1,class,classes);
+                float blue = get_color(2,class,classes);
+
+                j += classes;
+                float x = box[j+0];
+                float y = box[j+1];
+                x = (x+c)/side;
+                y = (y+r)/side;
+                float w = box[j+2]; //*maxwidth;
+                float h = box[j+3]; //*maxheight;
+                h = h*h;
+                w = w*w;
+
+                int left  = (x-w/2)*im.w;
+                int right = (x+w/2)*im.w;
+                int top   = (y-h/2)*im.h;
+                int bot   = (y+h/2)*im.h;
+                draw_box_width(im, left, top, right, bot, width, red, green, blue);
+            }
+        }
+    }
+    show_image(im, label);
+}
+
+void train_yolo(char *cfgfile, char *weightfile)
+{
+    char *train_images = "/home/pjreddie/data/voc/test/train.txt";
+    char *backup_directory = "/home/pjreddie/backup/";
+    srand(time(0));
+    data_seed = time(0);
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    float avg_loss = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    detection_layer layer = get_network_detection_layer(net);
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = 128;
+    int i = net.seen/imgs;
+
+    char **paths;
+    list *plist = get_paths(train_images);
+    int N = plist->size;
+    paths = (char **)list_to_array(plist);
+
+    if(i*imgs > N*80){
+        net.layers[net.n-1].joint = 1;
+        net.layers[net.n-1].objectness = 0;
+    }
+    if(i*imgs > N*120){
+        net.layers[net.n-1].rescore = 1;
+    }
+    data train, buffer;
+
+    int classes = layer.classes;
+    int background = layer.objectness;
+    int side = sqrt(get_detection_layer_locations(layer));
+
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
+    clock_t time;
+    while(i*imgs < N*130){
+        i += 1;
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
+
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+        float loss = train_network(net, train);
+        net.seen += imgs;
+        if (avg_loss < 0) avg_loss = loss;
+        avg_loss = avg_loss*.9 + loss*.1;
+
+        printf("%d: %f, %f avg, %lf seconds, %d images, epoch: %f\n", i, loss, avg_loss, sec(clock()-time), i*imgs, ((float)i)*imgs/N);
+
+        if((i-1)*imgs <= N && i*imgs > N){
+            fprintf(stderr, "First stage done\n");
+            net.learning_rate *= 10;
+            char buff[256];
+            sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
+            save_weights(net, buff);
+        }
+
+        if((i-1)*imgs <= 80*N && i*imgs > N*80){
+            fprintf(stderr, "Second stage done.\n");
+            net.learning_rate *= .1;
+            char buff[256];
+            sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base);
+            save_weights(net, buff);
+            net.layers[net.n-1].joint = 1;
+            net.layers[net.n-1].objectness = 0;
+            background = 0;
+
+            pthread_join(load_thread, 0);
+            free_data(buffer);
+            load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
+        }
+
+        if((i-1)*imgs <= 120*N && i*imgs > N*120){
+            fprintf(stderr, "Third stage done.\n");
+            char buff[256];
+            sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+            net.layers[net.n-1].rescore = 1;
+            save_weights(net, buff);
+        }
+
+        if(i%1000==0){
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
+            save_weights(net, buff);
+        }
+        free_data(train);
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s_rescore.weights", backup_directory, base);
+    save_weights(net, buff);
+}
+
+void convert_yolo_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
+{
+    int i,j;
+    int per_box = 4+classes+(background || objectness);
+    for (i = 0; i < num_boxes*num_boxes; ++i){
+        float scale = 1;
+        if(objectness) scale = 1-predictions[i*per_box];
+        int offset = i*per_box+(background||objectness);
+        for(j = 0; j < classes; ++j){
+            float prob = scale*predictions[offset+j];
+            probs[i][j] = (prob > thresh) ? prob : 0;
+        }
+        int row = i / num_boxes;
+        int col = i % num_boxes;
+        offset += classes;
+        boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
+        boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
+        boxes[i].w = pow(predictions[offset + 2], 2) * w;
+        boxes[i].h = pow(predictions[offset + 3], 2) * h;
+    }
+}
+
+void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
+{
+    int i, j;
+    for(i = 0; i < num_boxes*num_boxes; ++i){
+        float xmin = boxes[i].x - boxes[i].w/2.;
+        float xmax = boxes[i].x + boxes[i].w/2.;
+        float ymin = boxes[i].y - boxes[i].h/2.;
+        float ymax = boxes[i].y + boxes[i].h/2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        for(j = 0; j < classes; ++j){
+            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
+                    xmin, ymin, xmax, ymax);
+        }
+    }
+}
+
+void validate_yolo(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    detection_layer layer = get_network_detection_layer(net);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *base = "results/comp4_det_test_";
+    list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
+    char **paths = (char **)list_to_array(plist);
+
+    int classes = layer.classes;
+    int objectness = layer.objectness;
+    int background = layer.background;
+    int num_boxes = sqrt(get_detection_layer_locations(layer));
+
+    int j;
+    FILE **fps = calloc(classes, sizeof(FILE *));
+    for(j = 0; j < classes; ++j){
+        char buff[1024];
+        snprintf(buff, 1024, "%s%s.txt", base, voc_class_names[j]);
+        fps[j] = fopen(buff, "w");
+    }
+    box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
+    float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
+    for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+    int m = plist->size;
+    int i=0;
+    int t;
+
+    float thresh = .001;
+    int nms = 1;
+    float iou_thresh = .5;
+
+    int nthreads = 8;
+    image *val = calloc(nthreads, sizeof(image));
+    image *val_resized = calloc(nthreads, sizeof(image));
+    image *buf = calloc(nthreads, sizeof(image));
+    image *buf_resized = calloc(nthreads, sizeof(image));
+    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+    for(t = 0; t < nthreads; ++t){
+        thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
+    }
+    time_t start = time(0);
+    for(i = nthreads; i < m+nthreads; i += nthreads){
+        fprintf(stderr, "%d\n", i);
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+            val_resized[t] = buf_resized[t];
+        }
+        for(t = 0; t < nthreads && i+t < m; ++t){
+            thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
+        }
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+            char *path = paths[i+t-nthreads];
+            char *id = basecfg(path);
+            float *X = val_resized[t].data;
+            float *predictions = network_predict(net, X);
+            int w = val[t].w;
+            int h = val[t].h;
+            convert_yolo_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
+            if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
+            print_yolo_detections(fps, id, boxes, probs, num_boxes, classes, w, h);
+            free(id);
+            free_image(val[t]);
+            free_image(val_resized[t]);
+        }
+    }
+    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
+}
+
+void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
+{
+
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    detection_layer layer = get_network_detection_layer(net);
+    set_batch_network(&net, 1);
+    srand(2222222);
+    clock_t time;
+    char input[256];
+    while(1){
+        if(filename){
+            strncpy(input, filename, 256);
+        } else {
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            fgets(input, 256, stdin);
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input,0,0);
+        image sized = resize_image(im, net.w, net.h);
+        float *X = sized.data;
+        time=clock();
+        float *predictions = network_predict(net, X);
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+        draw_yolo(im, predictions, 7, layer.objectness, "predictions", thresh);
+        free_image(im);
+        free_image(sized);
+#ifdef OPENCV
+        cvWaitKey(0);
+        cvDestroyAllWindows();
+#endif
+        if (filename) break;
+    }
+}
+
+void run_yolo(int argc, char **argv)
+{
+    float thresh = find_float_arg(argc, argv, "-thresh", .2);
+    if(argc < 4){
+        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+        return;
+    }
+
+    char *cfg = argv[3];
+    char *weights = (argc > 4) ? argv[4] : 0;
+    char *filename = (argc > 5) ? argv[5]: 0;
+    if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh);
+    else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
+    else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
+}
-- 
GitLab