From 0f645836f193e75c4c3b718369e6fab15b5d19c5 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 10 Feb 2015 19:41:03 -0800
Subject: [PATCH] Detection is back, baby\!

---
 Makefile                       |   4 +-
 src/col2im.h                   |   2 +-
 src/col2im_kernels.cu          |   8 +-
 src/convolutional_kernels.cu   |   6 +-
 src/convolutional_layer.c      |  14 ++-
 src/convolutional_layer.h      |   2 +-
 src/darknet.c                  | 119 ++++++++++++++------
 src/data.c                     |  60 +++++-----
 src/data.h                     |   6 +-
 src/deconvolutional_kernels.cu | 104 +++++++++++++++++
 src/deconvolutional_layer.c    | 200 +++++++++++++++++++++++++++++++++
 src/deconvolutional_layer.h    |  65 +++++++++++
 src/dropout_layer.c            |  13 +++
 src/dropout_layer.h            |   1 +
 src/im2col.h                   |   2 +-
 src/im2col_kernels.cu          |  14 +--
 src/maxpool_layer.c            |  17 ++-
 src/maxpool_layer.h            |   2 +-
 src/network.c                  |  61 ++++++++--
 src/network.h                  |   1 +
 src/network_kernels.cu         |  26 +++++
 src/normalization_layer.c      |   7 +-
 src/normalization_layer.h      |   2 +-
 src/parser.c                   | 123 +++++++++++++++++++-
 24 files changed, 744 insertions(+), 115 deletions(-)
 create mode 100644 src/deconvolutional_kernels.cu
 create mode 100644 src/deconvolutional_layer.c
 create mode 100644 src/deconvolutional_layer.h

diff --git a/Makefile b/Makefile
index 879ff8e..6e7ecf7 100644
--- a/Makefile
+++ b/Makefile
@@ -25,9 +25,9 @@ CFLAGS+=-DGPU
 LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas
 endif
 
-OBJ=gemm.o utils.o cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o
+OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o
 ifeq ($(GPU), 1) 
-OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
+OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
 endif
 
 OBJS = $(addprefix $(OBJDIR), $(OBJ))
diff --git a/src/col2im.h b/src/col2im.h
index 2fdc427..0237497 100644
--- a/src/col2im.h
+++ b/src/col2im.h
@@ -6,7 +6,7 @@ void col2im_cpu(float* data_col,
         int ksize, int stride, int pad, float* data_im);
 
 #ifdef GPU
-void col2im_ongpu(float *data_col, int batch,
+void col2im_ongpu(float *data_col,
         int channels, int height, int width,
         int ksize, int stride, int pad, float *data_im);
 #endif
diff --git a/src/col2im_kernels.cu b/src/col2im_kernels.cu
index 73de9b7..2fa2030 100644
--- a/src/col2im_kernels.cu
+++ b/src/col2im_kernels.cu
@@ -3,7 +3,7 @@ extern "C" {
 #include "cuda.h"
 }
 
-__global__ void col2im_kernel(float *data_col, int offset,
+__global__ void col2im_kernel(float *data_col,
         int channels, int height, int width,
         int ksize, int stride, int pad, float *data_im)
 {
@@ -46,17 +46,17 @@ __global__ void col2im_kernel(float *data_col, int offset,
             val += part;
         }
     }
-    data_im[index+offset] = val;
+    data_im[index] = val;
 }
 
 
-extern "C" void col2im_ongpu(float *data_col, int offset,
+extern "C" void col2im_ongpu(float *data_col,
         int channels,  int height,  int width,
         int ksize,  int stride,  int pad, float *data_im)
 {
 
     size_t n = channels*height*width;
 
-    col2im_kernel<<<cuda_gridsize(n), BLOCK>>>(data_col, offset, channels, height, width, ksize, stride, pad, data_im);
+    col2im_kernel<<<cuda_gridsize(n), BLOCK>>>(data_col, channels, height, width, ksize, stride, pad, data_im);
     check_error(cudaPeekAtLastError());
 }
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index fcf2466..bcf307f 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -65,7 +65,7 @@ extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float
     bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
 
     for(i = 0; i < layer.batch; ++i){
-        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
+        im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
         float * a = layer.filters_gpu;
         float * b = layer.col_image_gpu;
         float * c = layer.output_gpu;
@@ -93,7 +93,7 @@ extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, floa
         float * b = layer.col_image_gpu;
         float * c = layer.filter_updates_gpu;
 
-        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
+        im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
         gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n);
 
         if(delta_gpu){
@@ -104,7 +104,7 @@ extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, floa
 
             gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
 
-            col2im_ongpu(layer.col_image_gpu, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_gpu);
+            col2im_ongpu(layer.col_image_gpu, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_gpu + i*layer.c*layer.h*layer.w);
         }
     }
 }
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 2e25844..7782e3d 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -44,7 +44,6 @@ image get_convolutional_delta(convolutional_layer layer)
 convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
 {
     int i;
-    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
     convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
 
     layer->learning_rate = learning_rate;
@@ -95,11 +94,10 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
     return layer;
 }
 
-void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
 {
     layer->h = h;
     layer->w = w;
-    layer->c = c;
     int out_h = convolutional_out_height(*layer);
     int out_w = convolutional_out_width(*layer);
 
@@ -109,6 +107,16 @@ void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
                                 layer->batch*out_h * out_w * layer->n*sizeof(float));
     layer->delta  = realloc(layer->delta,
                                 layer->batch*out_h * out_w * layer->n*sizeof(float));
+
+    #ifdef GPU
+    cuda_free(layer->col_image_gpu);
+    cuda_free(layer->delta_gpu);
+    cuda_free(layer->output_gpu);
+
+    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
+    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
+    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
+    #endif
 }
 
 void bias_output(float *output, float *biases, int batch, int n, int size)
diff --git a/src/convolutional_layer.h b/src/convolutional_layer.h
index dcc48bb..72f3f72 100644
--- a/src/convolutional_layer.h
+++ b/src/convolutional_layer.h
@@ -54,7 +54,7 @@ void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int
 #endif
 
 convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay);
-void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c);
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w);
 void forward_convolutional_layer(const convolutional_layer layer, float *in);
 void update_convolutional_layer(convolutional_layer layer);
 image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);
diff --git a/src/darknet.c b/src/darknet.c
index 0b93aa6..92a9196 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -57,8 +57,8 @@ void draw_detection(image im, float *box, int side)
                 int d = im.w/side;
                 int y = r*d+box[j+1]*d;
                 int x = c*d+box[j+2]*d;
-                int h = box[j+3]*256;
-                int w = box[j+4]*256;
+                int h = box[j+3]*im.h;
+                int w = box[j+4]*im.w;
                 //printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
                 //printf("%d %d %d %d\n", x, y, w, h);
                 //printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
@@ -70,54 +70,79 @@ void draw_detection(image im, float *box, int side)
     cvWaitKey(0);
 }
 
+char *basename(char *cfgfile)
+{
+    char *c = cfgfile;
+    char *next;
+    while((next = strchr(c, '/')))
+    {
+        c = next+1;
+    }
+    c = copy_string(c);
+    next = strchr(c, '_');
+    if (next) *next = 0;
+    next = strchr(c, '.');
+    if (next) *next = 0;
+    return c;
+}
 
-void train_detection_net(char *cfgfile)
+void train_detection_net(char *cfgfile, char *weightfile)
 {
+    char *base = basename(cfgfile);
+    printf("%s\n", base);
     float avg_loss = 1;
-    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
     network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 1024;
+    int imgs = 128;
     srand(time(0));
     //srand(23410);
-    int i = 0;
-    list *plist = get_paths("/home/pjreddie/data/imagenet/horse.txt");
+    int i = net.seen/imgs;
+    list *plist = get_paths("/home/pjreddie/data/imagenet/horse_pos.txt");
     char **paths = (char **)list_to_array(plist);
     printf("%d\n", plist->size);
     data train, buffer;
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
+    int im_dim = 512;
+    int jitter = 64;
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer);
     clock_t time;
     while(1){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, 256, 256, 7, 7, 256, &buffer);
-        //data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer);
 
-/*
-        image im = float_to_image(224, 224, 3, train.X.vals[923]);
+        /*
+        image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[923]);
         draw_detection(im, train.y.vals[923], 7);
+        show_image(im, "truth");
+        cvWaitKey(0);
         */
 
-        normalize_data_rows(train);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
         float loss = train_network(net, train);
+        net.seen += imgs;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
         if(i%100==0){
             char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
-            save_network(net, buff);
+            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+            save_weights(net, buff);
         }
         free_data(train);
     }
 }
 
-void validate_detection_net(char *cfgfile)
+void validate_detection_net(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
@@ -137,7 +162,6 @@ void validate_detection_net(char *cfgfile)
         time=clock();
         pthread_join(load_thread, 0);
         val = buffer;
-        normalize_data_rows(val);
 
         num = (i+1)*m/splits - i*m/splits;
         char **part = paths+(i*m/splits);
@@ -206,20 +230,13 @@ void train_imagenet_distributed(char *address)
 }
 */
 
-char *basename(char *cfgfile)
+void convert(char *cfgfile, char *outfile, char *weightfile)
 {
-    char *c = cfgfile;
-    char *next;
-    while((next = strchr(c, '/')))
-    {
-        c = next+1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
     }
-    c = copy_string(c);
-    next = strchr(c, '_');
-    if (next) *next = 0;
-    next = strchr(c, '.');
-    if (next) *next = 0;
-    return c;
+    save_network(net, outfile);
 }
 
 void train_imagenet(char *cfgfile, char *weightfile)
@@ -232,8 +249,6 @@ void train_imagenet(char *cfgfile, char *weightfile)
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    //test_learn_bias(*(convolutional_layer *)net.layers[1]);
-    //set_learning_network(&net, net.learning_rate, 0, net.decay);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1024;
     int i = net.seen/imgs;
@@ -279,7 +294,7 @@ void validate_imagenet(char *filename, char *weightfile)
 
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
 
-    list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list");
+    list *plist = get_paths("/data/imagenet/cls.val.list");
     char **paths = (char **)list_to_array(plist);
     int m = plist->size;
     free_list(plist);
@@ -312,9 +327,12 @@ void validate_imagenet(char *filename, char *weightfile)
     }
 }
 
-void test_detection(char *cfgfile)
+void test_detection(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
@@ -323,7 +341,8 @@ void test_detection(char *cfgfile)
         fgets(filename, 256, stdin);
         strtok(filename, "\n");
         image im = load_image_color(filename, 224, 224);
-        z_normalize_image(im);
+        translate_image(im, -128);
+        scale_image(im, 1/128.);
         printf("%d %d %d\n", im.h, im.w, im.c);
         float *X = im.data;
         time=clock();
@@ -386,6 +405,30 @@ void test_dog(char *cfgfile)
     cvWaitKey(0);
 }
 
+void test_voc_segment(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    while(1){
+        char filename[256];
+        fgets(filename, 256, stdin);
+        strtok(filename, "\n");
+        image im = load_image_color(filename, 500, 500);
+        //resize_network(net, im.h, im.w, im.c);
+        translate_image(im, -128);
+        scale_image(im, 1/128.);
+        //float *predictions = network_predict(net, im.data);
+        network_predict(net, im.data);
+        free_image(im);
+        image output = get_network_image_layer(net, net.n-2);
+        show_image(output, "Segment Output");
+        cvWaitKey(0);
+    }
+}
+
 void test_imagenet(char *cfgfile)
 {
     network net = parse_network_cfg(cfgfile);
@@ -764,25 +807,27 @@ int main(int argc, char **argv)
         fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
         return 0;
     }
-    else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
+    else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2], (argc > 3)? argv[3] : 0);
     else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]);
     else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]);
     else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]);
     else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
     else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
     else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0);
+    else if(0==strcmp(argv[1], "testseg")) test_voc_segment(argv[2], (argc > 3)? argv[3] : 0);
     //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
-    else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
+    else if(0==strcmp(argv[1], "detect")) test_detection(argv[2], (argc > 3)? argv[3] : 0);
     else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
     else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
     else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0);
     else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
-    else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
+    else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2], (argc > 3)? argv[3] : 0);
     else if(argc < 4){
         fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
         return 0;
     }
     else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
+    else if(0==strcmp(argv[1], "convert")) convert(argv[2], argv[3], (argc > 4)? argv[4] : 0);
     else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3]));
     fprintf(stderr, "Success!\n");
     return 0;
diff --git a/src/data.c b/src/data.c
index 3a37411..fd6b722 100644
--- a/src/data.c
+++ b/src/data.c
@@ -16,7 +16,7 @@ struct load_args{
     int w;
     int nh;
     int nw;
-    float scale;
+    int jitter;
     data *d;
 };
 
@@ -33,16 +33,18 @@ list *get_paths(char *filename)
     return lines;
 }
 
-void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, float scale, int dx, int dy)
+void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, int dy, int dx, int jitter)
 {
     int box_height = height/num_height;
     int box_width = width/num_width;
-    char *labelpath = find_replace(path, "imgs", "det");
+    char *labelpath = find_replace(path, "imgs", "det/train");
     labelpath = find_replace(labelpath, ".JPEG", ".txt");
     FILE *file = fopen(labelpath, "r");
     if(!file) file_error(labelpath);
-    int x, y, h, w;
-    while(fscanf(file, "%d %d %d %d", &x, &y, &w, &h) == 4){
+    float x, y, h, w;
+    while(fscanf(file, "%f %f %f %f", &x, &y, &w, &h) == 4){
+        x *= width + jitter;
+        y *= height + jitter;
         x -= dx;
         y -= dy;
         int i = x/box_width;
@@ -53,17 +55,15 @@ void fill_truth_detection(char *path, float *truth, int height, int width, int n
         if(j < 0) j = 0;
         if(j >= num_height) j = num_height-1;
         
-        float dw = (float)(x%box_width)/box_height;
-        float dh = (float)(y%box_width)/box_width;
-        float sh = h/scale;
-        float sw = w/scale;
+        float dw = (x - i*box_width)/box_width;
+        float dh = (y - j*box_height)/box_height;
         //printf("%d %d %f %f\n", i, j, dh, dw);
         int index = (i+j*num_width)*5;
         truth[index++] = 1;
         truth[index++] = dh;
         truth[index++] = dw;
-        truth[index++] = sh;
-        truth[index++] = sw;
+        truth[index++] = h*(height+jitter)/height;
+        truth[index++] = w*(width+jitter)/width;
     }
     fclose(file);
 }
@@ -120,13 +120,13 @@ matrix load_labels_paths(char **paths, int n, char **labels, int k)
     return y;
 }
 
-matrix load_labels_detection(char **paths, int n, int height, int width, int num_height, int num_width, float scale)
+matrix load_labels_detection(char **paths, int n, int height, int width, int num_height, int num_width)
 {
     int k = num_height*num_width*5;
     matrix y = make_matrix(n, k);
     int i;
     for(i = 0; i < n; ++i){
-        fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, scale,0,0);
+        fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, 0, 0, 0);
     }
     return y;
 }
@@ -165,7 +165,7 @@ void free_data(data d)
     }
 }
 
-data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
+data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter)
 {
     char **random_paths = get_random_paths(paths, n, m);
     int i;
@@ -175,13 +175,13 @@ data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w,
     int k = nh*nw*5;
     d.y = make_matrix(n, k);
     for(i = 0; i < n; ++i){
-        int dx = rand()%32;
-        int dy = rand()%32;
-        fill_truth_detection(random_paths[i], d.y.vals[i], 224, 224, nh, nw, scale, dx, dy);
+        int dx = rand()%jitter;
+        int dy = rand()%jitter;
+        fill_truth_detection(random_paths[i], d.y.vals[i], h-jitter, w-jitter, nh, nw, dy, dx, jitter);
         image a = float_to_image(h, w, 3, d.X.vals[i]);
-        jitter_image(a,224,224,dy,dx);
+        jitter_image(a,h-jitter,w-jitter,dy,dx);
     }
-    d.X.cols = 224*224*3;
+    d.X.cols = (h-jitter)*(w-jitter)*3;
     free(random_paths);
     return d;
 }
@@ -189,12 +189,14 @@ data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w,
 void *load_detection_thread(void *ptr)
 {
     struct load_args a = *(struct load_args*)ptr;
-    *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.h, a.w, a.nh, a.nw, a.scale);
+    *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.h, a.w, a.nh, a.nw, a.jitter);
+    translate_data_rows(*a.d, -128);
+    scale_data_rows(*a.d, 1./128);
     free(ptr);
     return 0;
 }
 
-pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, float scale, data *d)
+pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter, data *d)
 {
     pthread_t thread;
     struct load_args *args = calloc(1, sizeof(struct load_args));
@@ -205,7 +207,7 @@ pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, i
     args->w = w;
     args->nh = nh;
     args->nw = nw;
-    args->scale = scale;
+    args->jitter = jitter;
     args->d = d;
     if(pthread_create(&thread, 0, load_detection_thread, args)) {
         error("Thread creation failed");
@@ -213,13 +215,13 @@ pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, i
     return thread;
 }
 
-data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
+data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw)
 {
     char **random_paths = get_random_paths(paths, n, m);
     data d;
     d.shallow = 0;
     d.X = load_image_paths(random_paths, n, h, w);
-    d.y = load_labels_detection(random_paths, n, h, w, nh, nw, scale);
+    d.y = load_labels_detection(random_paths, n, h, w, nh, nw);
     free(random_paths);
     return d;
 }
@@ -239,8 +241,8 @@ void *load_in_thread(void *ptr)
 {
     struct load_args a = *(struct load_args*)ptr;
     *a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w);
-	translate_data_rows(*a.d, -128);
-	scale_data_rows(*a.d, 1./128);
+    translate_data_rows(*a.d, -128);
+    scale_data_rows(*a.d, 1./128);
     free(ptr);
     return 0;
 }
@@ -301,9 +303,9 @@ data load_cifar10_data(char *filename)
             X.vals[i][j] = (double)bytes[j+1];
         }
     }
-	translate_data_rows(d, -144);
-	scale_data_rows(d, 1./128);
-	//normalize_data_rows(d);
+    translate_data_rows(d, -144);
+    scale_data_rows(d, 1./128);
+    //normalize_data_rows(d);
     fclose(fp);
     return d;
 }
diff --git a/src/data.h b/src/data.h
index 367416e..13b62d8 100644
--- a/src/data.h
+++ b/src/data.h
@@ -17,10 +17,10 @@ void free_data(data d);
 data load_data(char **paths, int n, int m, char **labels, int k, int h, int w);
 pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d);
 
-pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, float scale, data *d);
+pthread_t load_data_detection_thread(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter, data *d);
+data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, int jitter);
+data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw);
 
-data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale);
-data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale);
 data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
 data load_cifar10_data(char *filename);
 data load_all_cifar10();
diff --git a/src/deconvolutional_kernels.cu b/src/deconvolutional_kernels.cu
new file mode 100644
index 0000000..1d05a80
--- /dev/null
+++ b/src/deconvolutional_kernels.cu
@@ -0,0 +1,104 @@
+extern "C" {
+#include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
+#include "gemm.h"
+#include "blas.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "utils.h"
+#include "cuda.h"
+}
+
+extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in)
+{
+    int i;
+    int out_h = deconvolutional_out_height(layer);
+    int out_w = deconvolutional_out_width(layer);
+    int size = out_h*out_w;
+
+    int m = layer.size*layer.size*layer.n;
+    int n = layer.h*layer.w;
+    int k = layer.c;
+
+    bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
+
+    for(i = 0; i < layer.batch; ++i){
+        float *a = layer.filters_gpu;
+        float *b = in + i*layer.c*layer.h*layer.w;
+        float *c = layer.col_image_gpu;
+
+        gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
+
+        col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size);
+    }
+    activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
+}
+
+extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in, float *delta_gpu)
+{
+    float alpha = 1./layer.batch;
+    int out_h = deconvolutional_out_height(layer);
+    int out_w = deconvolutional_out_width(layer);
+    int size = out_h*out_w;
+    int i;
+
+    gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu);
+    backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size);
+
+    if(delta_gpu) memset(delta_gpu, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+
+    for(i = 0; i < layer.batch; ++i){
+        int m = layer.c;
+        int n = layer.size*layer.size*layer.n;
+        int k = layer.h*layer.w;
+
+        float *a = in + i*m*n;
+        float *b = layer.col_image_gpu;
+        float *c = layer.filter_updates_gpu;
+
+        im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w, 
+                layer.size, layer.stride, 0, b);
+        gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
+
+        if(delta_gpu){
+            int m = layer.c;
+            int n = layer.h*layer.w;
+            int k = layer.size*layer.size*layer.n;
+
+            float *a = layer.filters_gpu;
+            float *b = layer.col_image_gpu;
+            float *c = delta_gpu + i*n*m;
+
+            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        }
+    }
+}
+
+extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer)
+{
+    cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
+    cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+}
+
+extern "C" void push_deconvolutional_layer(deconvolutional_layer layer)
+{
+    cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
+    cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+}
+
+extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+
+    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1);
+
+    axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
+    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
+    scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1);
+}
+
diff --git a/src/deconvolutional_layer.c b/src/deconvolutional_layer.c
new file mode 100644
index 0000000..d4a8426
--- /dev/null
+++ b/src/deconvolutional_layer.c
@@ -0,0 +1,200 @@
+#include "deconvolutional_layer.h"
+#include "convolutional_layer.h"
+#include "utils.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
+#include <stdio.h>
+#include <time.h>
+
+int deconvolutional_out_height(deconvolutional_layer layer)
+{
+    int h = layer.stride*(layer.h - 1) + layer.size;
+    return h;
+}
+
+int deconvolutional_out_width(deconvolutional_layer layer)
+{
+    int w = layer.stride*(layer.w - 1) + layer.size;
+    return w;
+}
+
+int deconvolutional_out_size(deconvolutional_layer layer)
+{
+    return deconvolutional_out_height(layer) * deconvolutional_out_width(layer);
+}
+
+image get_deconvolutional_image(deconvolutional_layer layer)
+{
+    int h,w,c;
+    h = deconvolutional_out_height(layer);
+    w = deconvolutional_out_width(layer);
+    c = layer.n;
+    return float_to_image(h,w,c,layer.output);
+}
+
+image get_deconvolutional_delta(deconvolutional_layer layer)
+{
+    int h,w,c;
+    h = deconvolutional_out_height(layer);
+    w = deconvolutional_out_width(layer);
+    c = layer.n;
+    return float_to_image(h,w,c,layer.delta);
+}
+
+deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay)
+{
+    int i;
+    deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer));
+
+    layer->learning_rate = learning_rate;
+    layer->momentum = momentum;
+    layer->decay = decay;
+
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    layer->n = n;
+    layer->batch = batch;
+    layer->stride = stride;
+    layer->size = size;
+
+    layer->filters = calloc(c*n*size*size, sizeof(float));
+    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
+
+    layer->biases = calloc(n, sizeof(float));
+    layer->bias_updates = calloc(n, sizeof(float));
+    float scale = 1./sqrt(size*size*c);
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
+    for(i = 0; i < n; ++i){
+        layer->biases[i] = scale;
+    }
+    int out_h = deconvolutional_out_height(*layer);
+    int out_w = deconvolutional_out_width(*layer);
+
+    layer->col_image = calloc(h*w*size*size*n, sizeof(float));
+    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+
+    #ifdef GPU
+    layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
+    layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
+
+    layer->biases_gpu = cuda_make_array(layer->biases, n);
+    layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
+
+    layer->col_image_gpu = cuda_make_array(layer->col_image, h*w*size*size*n);
+    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
+    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
+    #endif
+
+    layer->activation = activation;
+
+    fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+
+    return layer;
+}
+
+void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w)
+{
+    layer->h = h;
+    layer->w = w;
+    int out_h = deconvolutional_out_height(*layer);
+    int out_w = deconvolutional_out_width(*layer);
+
+    layer->col_image = realloc(layer->col_image,
+                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+    layer->output = realloc(layer->output,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    layer->delta  = realloc(layer->delta,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    #ifdef GPU
+    cuda_free(layer->col_image_gpu);
+    cuda_free(layer->delta_gpu);
+    cuda_free(layer->output_gpu);
+
+    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
+    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
+    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
+    #endif
+}
+
+void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in)
+{
+    int i;
+    int out_h = deconvolutional_out_height(layer);
+    int out_w = deconvolutional_out_width(layer);
+    int size = out_h*out_w;
+
+    int m = layer.size*layer.size*layer.n;
+    int n = layer.h*layer.w;
+    int k = layer.c;
+
+    bias_output(layer.output, layer.biases, layer.batch, layer.n, size);
+
+    for(i = 0; i < layer.batch; ++i){
+        float *a = layer.filters;
+        float *b = in + i*layer.c*layer.h*layer.w;
+        float *c = layer.col_image;
+
+        gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
+
+        col2im_cpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output+i*layer.n*size);
+    }
+    activate_array(layer.output, layer.batch*layer.n*size, layer.activation);
+}
+
+void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta)
+{
+    float alpha = 1./layer.batch;
+    int out_h = deconvolutional_out_height(layer);
+    int out_w = deconvolutional_out_width(layer);
+    int size = out_h*out_w;
+    int i;
+
+    gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta);
+    backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size);
+
+    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+
+    for(i = 0; i < layer.batch; ++i){
+        int m = layer.c;
+        int n = layer.size*layer.size*layer.n;
+        int k = layer.h*layer.w;
+
+        float *a = in + i*m*n;
+        float *b = layer.col_image;
+        float *c = layer.filter_updates;
+
+        im2col_cpu(layer.delta + i*layer.n*size, layer.n, out_h, out_w, 
+                layer.size, layer.stride, 0, b);
+        gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
+
+        if(delta){
+            int m = layer.c;
+            int n = layer.h*layer.w;
+            int k = layer.size*layer.size*layer.n;
+
+            float *a = layer.filters;
+            float *b = layer.col_image;
+            float *c = delta + i*n*m;
+
+            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        }
+    }
+}
+
+void update_deconvolutional_layer(deconvolutional_layer layer)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
+
+    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
+    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
+    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
+}
+
+
+
diff --git a/src/deconvolutional_layer.h b/src/deconvolutional_layer.h
new file mode 100644
index 0000000..1da43dc
--- /dev/null
+++ b/src/deconvolutional_layer.h
@@ -0,0 +1,65 @@
+#ifndef DECONVOLUTIONAL_LAYER_H
+#define DECONVOLUTIONAL_LAYER_H
+
+#include "cuda.h"
+#include "image.h"
+#include "activations.h"
+
+typedef struct {
+    float learning_rate;
+    float momentum;
+    float decay;
+
+    int batch;
+    int h,w,c;
+    int n;
+    int size;
+    int stride;
+    float *filters;
+    float *filter_updates;
+
+    float *biases;
+    float *bias_updates;
+
+    float *col_image;
+    float *delta;
+    float *output;
+
+    #ifdef GPU
+    float * filters_gpu;
+    float * filter_updates_gpu;
+
+    float * biases_gpu;
+    float * bias_updates_gpu;
+
+    float * col_image_gpu;
+    float * delta_gpu;
+    float * output_gpu;
+    #endif
+
+    ACTIVATION activation;
+} deconvolutional_layer;
+
+#ifdef GPU
+void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in);
+void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in, float * delta_gpu);
+void update_deconvolutional_layer_gpu(deconvolutional_layer layer);
+void push_deconvolutional_layer(deconvolutional_layer layer);
+void pull_deconvolutional_layer(deconvolutional_layer layer);
+#endif
+
+deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay);
+void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w);
+void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in);
+void update_deconvolutional_layer(deconvolutional_layer layer);
+void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta);
+
+image get_deconvolutional_image(deconvolutional_layer layer);
+image get_deconvolutional_delta(deconvolutional_layer layer);
+image get_deconvolutional_filter(deconvolutional_layer layer, int i);
+
+int deconvolutional_out_height(deconvolutional_layer layer);
+int deconvolutional_out_width(deconvolutional_layer layer);
+
+#endif
+
diff --git a/src/dropout_layer.c b/src/dropout_layer.c
index 3a3e4cb..32a3408 100644
--- a/src/dropout_layer.c
+++ b/src/dropout_layer.c
@@ -21,6 +21,19 @@ dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
     return layer;
 } 
 
+void resize_dropout_layer(dropout_layer *layer, int inputs)
+{
+    layer->output = realloc(layer->output, layer->inputs*layer->batch*sizeof(float));
+    layer->rand = realloc(layer->rand, layer->inputs*layer->batch*sizeof(float));
+    #ifdef GPU
+    cuda_free(layer->output_gpu);
+    cuda_free(layer->rand_gpu);
+
+    layer->output_gpu = cuda_make_array(layer->output, inputs*layer->batch);
+    layer->rand_gpu = cuda_make_array(layer->rand, inputs*layer->batch);
+    #endif
+}
+
 void forward_dropout_layer(dropout_layer layer, float *input)
 {
     int i;
diff --git a/src/dropout_layer.h b/src/dropout_layer.h
index 55b63ac..051ce47 100644
--- a/src/dropout_layer.h
+++ b/src/dropout_layer.h
@@ -18,6 +18,7 @@ dropout_layer *make_dropout_layer(int batch, int inputs, float probability);
 
 void forward_dropout_layer(dropout_layer layer, float *input);
 void backward_dropout_layer(dropout_layer layer, float *delta);
+void resize_dropout_layer(dropout_layer *layer, int inputs);
 
 #ifdef GPU
 void forward_dropout_layer_gpu(dropout_layer layer, float * input);
diff --git a/src/im2col.h b/src/im2col.h
index b939043..f0ddeee 100644
--- a/src/im2col.h
+++ b/src/im2col.h
@@ -7,7 +7,7 @@ void im2col_cpu(float* data_im,
 
 #ifdef GPU
 
-void im2col_ongpu(float *im, int offset,
+void im2col_ongpu(float *im,
          int channels, int height, int width,
          int ksize, int stride, int pad,float *data_col);
 
diff --git a/src/im2col_kernels.cu b/src/im2col_kernels.cu
index feaf44d..a82c2dc 100644
--- a/src/im2col_kernels.cu
+++ b/src/im2col_kernels.cu
@@ -3,7 +3,7 @@ extern "C" {
 #include "cuda.h"
 }
 
-__global__ void im2col_pad_kernel(float *im,  int offset,
+__global__ void im2col_pad_kernel(float *im,
      int channels,  int height,  int width,
      int ksize,  int stride, float *data_col)
 {
@@ -32,13 +32,13 @@ __global__ void im2col_pad_kernel(float *im,  int offset,
     int im_row = h_offset + h * stride - pad;
     int im_col = w_offset + w * stride - pad;
 
-    int im_index = offset + im_col + width*(im_row + height*im_channel);
+    int im_index = im_col + width*(im_row + height*im_channel);
     float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
 
     data_col[col_index] = val;
 }
 
-__global__ void im2col_nopad_kernel(float *im,  int offset,
+__global__ void im2col_nopad_kernel(float *im,
         int channels,  int height,  int width,
         int ksize,  int stride, float *data_col)
 {
@@ -65,13 +65,13 @@ __global__ void im2col_nopad_kernel(float *im,  int offset,
     int im_row = h_offset + h * stride;
     int im_col = w_offset + w * stride;
 
-    int im_index = offset + im_col + width*(im_row + height*im_channel);
+    int im_index = im_col + width*(im_row + height*im_channel);
     float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
 
     data_col[col_index] = val;
 }
 
-extern "C" void im2col_ongpu(float *im, int offset,
+extern "C" void im2col_ongpu(float *im,
         int channels,  int height,  int width,
         int ksize,  int stride,  int pad, float *data_col)
 {
@@ -87,7 +87,7 @@ extern "C" void im2col_ongpu(float *im, int offset,
 
     size_t n = channels_col*height_col*width_col;
 
-    if(pad)im2col_pad_kernel<<<cuda_gridsize(n),BLOCK>>>(im,  offset, channels, height, width, ksize, stride, data_col);
-    else im2col_nopad_kernel<<<cuda_gridsize(n),BLOCK>>>(im,  offset, channels, height, width, ksize, stride, data_col);
+    if(pad)im2col_pad_kernel<<<cuda_gridsize(n),BLOCK>>>(im,  channels, height, width, ksize, stride, data_col);
+    else im2col_nopad_kernel<<<cuda_gridsize(n),BLOCK>>>(im,  channels, height, width, ksize, stride, data_col);
     check_error(cudaPeekAtLastError());
 }
diff --git a/src/maxpool_layer.c b/src/maxpool_layer.c
index 834ebdb..ef7176d 100644
--- a/src/maxpool_layer.c
+++ b/src/maxpool_layer.c
@@ -40,13 +40,22 @@ maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int
     return layer;
 }
 
-void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c)
+void resize_maxpool_layer(maxpool_layer *layer, int h, int w)
 {
     layer->h = h;
     layer->w = w;
-    layer->c = c;
-    layer->output = realloc(layer->output, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * layer->batch* sizeof(float));
-    layer->delta = realloc(layer->delta, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * layer->batch*sizeof(float));
+    int output_size = ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * layer->c * layer->batch;
+    layer->output = realloc(layer->output, output_size * sizeof(float));
+    layer->delta = realloc(layer->delta, output_size * sizeof(float));
+
+    #ifdef GPU
+    cuda_free((float *)layer->indexes_gpu);
+    cuda_free(layer->output_gpu);
+    cuda_free(layer->delta_gpu);
+    layer->indexes_gpu = cuda_make_int_array(output_size);
+    layer->output_gpu  = cuda_make_array(layer->output, output_size);
+    layer->delta_gpu   = cuda_make_array(layer->delta, output_size);
+    #endif
 }
 
 void forward_maxpool_layer(const maxpool_layer layer, float *input)
diff --git a/src/maxpool_layer.h b/src/maxpool_layer.h
index 516bd31..89fb245 100644
--- a/src/maxpool_layer.h
+++ b/src/maxpool_layer.h
@@ -21,7 +21,7 @@ typedef struct {
 
 image get_maxpool_image(maxpool_layer layer);
 maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
-void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c);
+void resize_maxpool_layer(maxpool_layer *layer, int h, int w);
 void forward_maxpool_layer(const maxpool_layer layer, float *input);
 void backward_maxpool_layer(const maxpool_layer layer, float *delta);
 
diff --git a/src/network.c b/src/network.c
index 2ec0881..bf0d63f 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,6 +8,7 @@
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
 #include "cost_layer.h"
 #include "normalization_layer.h"
@@ -20,6 +21,8 @@ char *get_layer_string(LAYER_TYPE a)
     switch(a){
         case CONVOLUTIONAL:
             return "convolutional";
+        case DECONVOLUTIONAL:
+            return "deconvolutional";
         case CONNECTED:
             return "connected";
         case MAXPOOL:
@@ -68,6 +71,11 @@ void forward_network(network net, float *input, float *truth, int train)
             forward_convolutional_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            forward_deconvolutional_layer(layer, input);
+            input = layer.output;
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             forward_connected_layer(layer, input);
@@ -122,14 +130,9 @@ void update_network(network net)
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             update_convolutional_layer(layer);
         }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == SOFTMAX){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == NORMALIZATION){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            update_deconvolutional_layer(layer);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
@@ -143,6 +146,9 @@ float *get_network_output_layer(network net, int i)
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.output;
@@ -178,6 +184,9 @@ float *get_network_delta_layer(network net, int i)
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.delta;
     } else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.delta;
@@ -247,9 +256,13 @@ void backward_network(network net, float *input)
             prev_input = get_network_output_layer(net, i-1);
             prev_delta = get_network_delta_layer(net, i-1);
         }
+
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             backward_convolutional_layer(layer, prev_input, prev_delta);
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            backward_deconvolutional_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -377,6 +390,9 @@ void set_batch_network(network *net, int b)
         if(net->types[i] == CONVOLUTIONAL){
             convolutional_layer *layer = (convolutional_layer *)net->layers[i];
             layer->batch = b;
+        }else if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
+            layer->batch = b;
         }
         else if(net->types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net->layers[i];
@@ -415,6 +431,10 @@ int get_network_input_size_layer(network net, int i)
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
     }
+    if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return layer.h*layer.w*layer.c;
@@ -448,6 +468,11 @@ int get_network_output_size_layer(network net, int i)
         image output = get_convolutional_image(layer);
         return output.h*output.w*output.c;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        image output = get_deconvolutional_image(layer);
+        return output.h*output.w*output.c;
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         image output = get_maxpool_image(layer);
@@ -483,21 +508,31 @@ int resize_network(network net, int h, int w, int c)
     for (i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-            resize_convolutional_layer(layer, h, w, c);
+            resize_convolutional_layer(layer, h, w);
             image output = get_convolutional_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
+            resize_deconvolutional_layer(layer, h, w);
+            image output = get_deconvolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
         }else if(net.types[i] == MAXPOOL){
             maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-            resize_maxpool_layer(layer, h, w, c);
+            resize_maxpool_layer(layer, h, w);
             image output = get_maxpool_image(*layer);
             h = output.h;
             w = output.w;
             c = output.c;
+        }else if(net.types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *)net.layers[i];
+            resize_dropout_layer(layer, h*w*c);
         }else if(net.types[i] == NORMALIZATION){
             normalization_layer *layer = (normalization_layer *)net.layers[i];
-            resize_normalization_layer(layer, h, w, c);
+            resize_normalization_layer(layer, h, w);
             image output = get_normalization_image(*layer);
             h = output.h;
             w = output.w;
@@ -527,6 +562,10 @@ image get_network_image_layer(network net, int i)
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return get_convolutional_image(layer);
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return get_deconvolutional_image(layer);
+    }
     else if(net.types[i] == MAXPOOL){
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return get_maxpool_image(layer);
diff --git a/src/network.h b/src/network.h
index d1f8638..66873d2 100644
--- a/src/network.h
+++ b/src/network.h
@@ -7,6 +7,7 @@
 
 typedef enum {
     CONVOLUTIONAL,
+    DECONVOLUTIONAL,
     CONNECTED,
     MAXPOOL,
     SOFTMAX,
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index c49f37b..1f3f2e0 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -10,6 +10,7 @@ extern "C" {
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
 #include "cost_layer.h"
 #include "normalization_layer.h"
@@ -31,6 +32,11 @@ void forward_network_gpu(network net, float * input, float * truth, int train)
             forward_convolutional_layer_gpu(layer, input);
             input = layer.output_gpu;
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            forward_deconvolutional_layer_gpu(layer, input);
+            input = layer.output_gpu;
+        }
         else if(net.types[i] == COST){
             cost_layer layer = *(cost_layer *)net.layers[i];
             forward_cost_layer_gpu(layer, input, truth);
@@ -84,6 +90,10 @@ void backward_network_gpu(network net, float * input)
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
+        }
         else if(net.types[i] == COST){
             cost_layer layer = *(cost_layer *)net.layers[i];
             backward_cost_layer_gpu(layer, prev_input, prev_delta);
@@ -116,6 +126,10 @@ void update_network_gpu(network net)
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
             update_convolutional_layer_gpu(layer);
         }
+        else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+            update_deconvolutional_layer_gpu(layer);
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             update_connected_layer_gpu(layer);
@@ -129,6 +143,10 @@ float * get_network_output_gpu_layer(network net, int i)
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output_gpu;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output_gpu;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output_gpu;
@@ -157,6 +175,10 @@ float * get_network_delta_gpu_layer(network net, int i)
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.delta_gpu;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.delta_gpu;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta_gpu;
@@ -208,6 +230,10 @@ float *get_network_output_layer_gpu(network net, int i)
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output;
     }
+    else if(net.types[i] == DECONVOLUTIONAL){
+        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
+        return layer.output;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
diff --git a/src/normalization_layer.c b/src/normalization_layer.c
index 67d873c..d82451b 100644
--- a/src/normalization_layer.c
+++ b/src/normalization_layer.c
@@ -35,13 +35,12 @@ normalization_layer *make_normalization_layer(int batch, int h, int w, int c, in
     return layer;
 }
 
-void resize_normalization_layer(normalization_layer *layer, int h, int w, int c)
+void resize_normalization_layer(normalization_layer *layer, int h, int w)
 {
     layer->h = h;
     layer->w = w;
-    layer->c = c;
-    layer->output = realloc(layer->output, h * w * c * layer->batch * sizeof(float));
-    layer->delta = realloc(layer->delta, h * w * c * layer->batch * sizeof(float));
+    layer->output = realloc(layer->output, h * w * layer->c * layer->batch * sizeof(float));
+    layer->delta = realloc(layer->delta, h * w * layer->c * layer->batch * sizeof(float));
     layer->sums = realloc(layer->sums, h*w * sizeof(float));
 }
 
diff --git a/src/normalization_layer.h b/src/normalization_layer.h
index fcf8af1..914fe7d 100644
--- a/src/normalization_layer.h
+++ b/src/normalization_layer.h
@@ -17,7 +17,7 @@ typedef struct {
 
 image get_normalization_image(normalization_layer layer);
 normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
-void resize_normalization_layer(normalization_layer *layer, int h, int w, int c);
+void resize_normalization_layer(normalization_layer *layer, int h, int w);
 void forward_normalization_layer(const normalization_layer layer, float *in);
 void backward_normalization_layer(const normalization_layer layer, float *in, float *delta);
 void visualize_normalization_layer(normalization_layer layer, char *window);
diff --git a/src/parser.c b/src/parser.c
index 6a107cc..3f94c80 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -7,6 +7,7 @@
 #include "crop_layer.h"
 #include "cost_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "connected_layer.h"
 #include "maxpool_layer.h"
 #include "normalization_layer.h"
@@ -23,6 +24,7 @@ typedef struct{
 }section;
 
 int is_convolutional(section *s);
+int is_deconvolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
 int is_dropout(section *s);
@@ -65,6 +67,49 @@ void parse_data(char *data, float *a, int n)
     }
 }
 
+deconvolutional_layer *parse_deconvolutional(list *options, network *net, int count)
+{
+    int h,w,c;
+    float learning_rate, momentum, decay;
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    ACTIVATION activation = get_activation(activation_s);
+    if(count == 0){
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        h = option_find_int(options, "height",1);
+        w = option_find_int(options, "width",1);
+        c = option_find_int(options, "channels",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
+        net->seen = option_find_int(options, "seen",0);
+    }else{
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        image m =  get_network_image_layer(*net, count-1);
+        h = m.h;
+        w = m.w;
+        c = m.c;
+        if(h == 0) error("Layer before deconvolutional layer must output image.");
+    }
+    deconvolutional_layer *layer = make_deconvolutional_layer(net->batch,h,w,c,n,size,stride,activation,learning_rate,momentum,decay);
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer->filters, c*n*size*size);
+    parse_data(biases, layer->biases, n);
+    #ifdef GPU
+    if(weights || biases) push_deconvolutional_layer(*layer);
+    #endif
+    option_unused(options);
+    return layer;
+}
+
 convolutional_layer *parse_convolutional(list *options, network *net, int count)
 {
     int h,w,c;
@@ -306,6 +351,10 @@ network parse_network_cfg(char *filename)
             convolutional_layer *layer = parse_convolutional(options, &net, count);
             net.types[count] = CONVOLUTIONAL;
             net.layers[count] = layer;
+        }else if(is_deconvolutional(s)){
+            deconvolutional_layer *layer = parse_deconvolutional(options, &net, count);
+            net.types[count] = DECONVOLUTIONAL;
+            net.layers[count] = layer;
         }else if(is_connected(s)){
             connected_layer *layer = parse_connected(options, &net, count);
             net.types[count] = CONNECTED;
@@ -360,6 +409,11 @@ int is_cost(section *s)
 {
     return (strcmp(s->type, "[cost]")==0);
 }
+int is_deconvolutional(section *s)
+{
+    return (strcmp(s->type, "[deconv]")==0
+            || strcmp(s->type, "[deconvolutional]")==0);
+}
 int is_convolutional(section *s)
 {
     return (strcmp(s->type, "[conv]")==0
@@ -438,7 +492,7 @@ list *read_cfg(char *filename)
                 break;
             default:
                 if(!read_option(line, current->options)){
-                    printf("Config file error line %d, could parse: %s\n", nu, line);
+                    fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
                     free(line);
                 }
                 break;
@@ -488,6 +542,45 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int
     fprintf(fp, "\n\n");
 }
 
+void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
+{
+    #ifdef GPU
+    if(gpu_index >= 0)  pull_deconvolutional_layer(*l);
+    #endif
+    int i;
+    fprintf(fp, "[deconvolutional]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n"
+                "seen=%d\n",
+                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+            fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+            fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "filters=%d\n"
+            "size=%d\n"
+            "stride=%d\n"
+            "activation=%s\n",
+            l->n, l->size, l->stride,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+
 void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
 {
     fprintf(fp, "[freeweight]\n");
@@ -599,7 +692,7 @@ void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
 
 void save_weights(network net, char *filename)
 {
-    printf("Saving weights to %s\n", filename);
+    fprintf(stderr, "Saving weights to %s\n", filename);
     FILE *fp = fopen(filename, "w");
     if(!fp) file_error(filename);
 
@@ -621,6 +714,17 @@ void save_weights(network net, char *filename)
             fwrite(layer.biases, sizeof(float), layer.n, fp);
             fwrite(layer.filters, sizeof(float), num, fp);
         }
+        if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_deconvolutional_layer(layer);
+            }
+            #endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
         if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *) net.layers[i];
             #ifdef GPU
@@ -637,7 +741,7 @@ void save_weights(network net, char *filename)
 
 void load_weights(network *net, char *filename)
 {
-    printf("Loading weights from %s\n", filename);
+    fprintf(stderr, "Loading weights from %s\n", filename);
     FILE *fp = fopen(filename, "r");
     if(!fp) file_error(filename);
 
@@ -660,6 +764,17 @@ void load_weights(network *net, char *filename)
             }
             #endif
         }
+        if(net->types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_deconvolutional_layer(layer);
+            }
+            #endif
+        }
         if(net->types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *) net->layers[i];
             fread(layer.biases, sizeof(float), layer.outputs, fp);
@@ -683,6 +798,8 @@ void save_network(network net, char *filename)
     {
         if(net.types[i] == CONVOLUTIONAL)
             print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DECONVOLUTIONAL)
+            print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
         else if(net.types[i] == CONNECTED)
             print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
         else if(net.types[i] == CROP)
-- 
GitLab