From 0cd2379e2ccbad07bad3f88f8dc564776605802d Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sat, 14 Nov 2015 12:34:17 -0800
Subject: [PATCH] some changes

---
 Makefile               |   2 +-
 src/coco.c             |   8 +-
 src/coco_kernels.cu    | 109 ++++++++++++++++
 src/data.c             |   4 +-
 src/layer.h            |   3 +-
 src/local_kernels.cu   | 226 +++++++++++++++++++++++++++++++++
 src/local_layer.c      | 275 +++++++++++++++++++++++++++++++++++++++++
 src/local_layer.h      |  31 +++++
 src/network.c          |   9 ++
 src/network_kernels.cu |   7 ++
 src/nightmare.c        |   7 +-
 src/parser.c           |  50 ++++++++
 src/yolo.c             |  26 ++--
 src/yolo_kernels.cu    | 115 +++++++++++++----
 14 files changed, 817 insertions(+), 55 deletions(-)
 create mode 100644 src/coco_kernels.cu
 create mode 100644 src/local_kernels.cu
 create mode 100644 src/local_layer.c
 create mode 100644 src/local_layer.h

diff --git a/Makefile b/Makefile
index 44a193f..1b6aa80 100644
--- a/Makefile
+++ b/Makefile
@@ -34,7 +34,7 @@ CFLAGS+= -DGPU
 LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
 endif
 
-OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o
+OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o
 ifeq ($(GPU), 1) 
 OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o yolo_kernels.o
 endif
diff --git a/src/coco.c b/src/coco.c
index aadf09d..cef6ade 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -15,7 +15,7 @@ char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","
 
 int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
-void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char *label)
+void draw_coco(image im, int num, float thresh, box *boxes, float **probs)
 {
     int classes = 80;
     int i;
@@ -38,7 +38,6 @@ void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char
             draw_box_width(im, left, top, right, bot, width, red, green, blue);
         }
     }
-    show_image(im, label);
 }
 
 void train_coco(char *cfgfile, char *weightfile)
@@ -215,7 +214,7 @@ void validate_coco(char *cfgfile, char *weightfile)
     int i=0;
     int t;
 
-    float thresh = .001;
+    float thresh = .01;
     int nms = 1;
     float iou_thresh = .5;
 
@@ -393,7 +392,8 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
         float *predictions = network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
         convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
-        draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
+        draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs);
+        show_image(im, "predictions");
 
         show_image(sized, "resized");
         free_image(im);
diff --git a/src/coco_kernels.cu b/src/coco_kernels.cu
new file mode 100644
index 0000000..9c201c0
--- /dev/null
+++ b/src/coco_kernels.cu
@@ -0,0 +1,109 @@
+extern "C" {
+#include "network.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+#include "box.h"
+#include "image.h"
+}
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui.hpp"
+#include "opencv2/imgproc/imgproc.hpp"
+extern "C" image ipl_to_image(IplImage* src);
+extern "C" void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
+extern "C" void draw_coco(image im, int num, float thresh, box *boxes, float **probs);
+
+static float **probs;
+static box *boxes;
+static network net;
+static image in   ;
+static image in_s ;
+static image det  ;
+static image det_s;
+static image disp ;
+static cv::VideoCapture cap(0);
+
+void *fetch_in_thread(void *ptr)
+{
+    cv::Mat frame_m;
+    cap >> frame_m;
+    IplImage frame = frame_m;
+    in = ipl_to_image(&frame);
+    rgbgr_image(in);
+    in_s = resize_image(in, net.w, net.h);
+    return 0;
+}
+
+void *detect_in_thread(void *ptr)
+{
+    float nms = .4;
+    float thresh = .2;
+
+    detection_layer l = net.layers[net.n-1];
+    float *X = det_s.data;
+    float *predictions = network_predict(net, X);
+    free_image(det_s);
+    convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
+    if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+    printf("\033[2J");
+    printf("\033[1;1H");
+    printf("\nObjects:\n\n");
+    draw_coco(det, l.side*l.side*l.n, thresh, boxes, probs);
+    return 0;
+}
+
+extern "C" void demo_coco(char *cfgfile, char *weightfile, float thresh)
+{
+    printf("YOLO demo\n");
+    net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+
+    srand(2222222);
+
+    if(!cap.isOpened()) error("Couldn't connect to webcam.\n");
+
+    detection_layer l = net.layers[net.n-1];
+    int j;
+
+    boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
+    probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
+    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
+
+    pthread_t fetch_thread;
+    pthread_t detect_thread;
+
+    fetch_in_thread(0);
+    det = in;
+    det_s = in_s;
+
+    fetch_in_thread(0);
+    detect_in_thread(0);
+    disp = det;
+    det = in;
+    det_s = in_s;
+
+    while(1){
+        if(pthread_create(&fetch_thread, 0, fetch_in_thread, 0)) error("Thread creation failed");
+        if(pthread_create(&detect_thread, 0, detect_in_thread, 0)) error("Thread creation failed");
+        show_image(disp, "YOLO");
+        free_image(disp);
+        cvWaitKey(1);
+        pthread_join(fetch_thread, 0);
+        pthread_join(detect_thread, 0);
+
+        disp  = det;
+        det   = in;
+        det_s = in_s;
+    }
+}
+#else
+extern "C" void demo_coco(char *cfgfile, char *weightfile, float thresh){
+    fprintf(stderr, "YOLO-COCO demo needs OpenCV for webcam images.\n");
+}
+#endif
+
diff --git a/src/data.c b/src/data.c
index df15dc5..9b84c5a 100644
--- a/src/data.c
+++ b/src/data.c
@@ -574,9 +574,7 @@ pthread_t load_data_in_thread(load_args args)
     pthread_t thread;
     struct load_args *ptr = calloc(1, sizeof(struct load_args));
     *ptr = args;
-    if(pthread_create(&thread, 0, load_thread, ptr)) {
-        error("Thread creation failed");
-    }
+    if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed");
     return thread;
 }
 
diff --git a/src/layer.h b/src/layer.h
index 0137c8e..2a74437 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -15,7 +15,8 @@ typedef enum {
     ROUTE,
     COST,
     NORMALIZATION,
-    AVGPOOL
+    AVGPOOL,
+    LOCAL
 } LAYER_TYPE;
 
 typedef enum{
diff --git a/src/local_kernels.cu b/src/local_kernels.cu
new file mode 100644
index 0000000..8717416
--- /dev/null
+++ b/src/local_kernels.cu
@@ -0,0 +1,226 @@
+extern "C" {
+#include "local_layer.h"
+#include "gemm.h"
+#include "blas.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "utils.h"
+#include "cuda.h"
+}
+
+__global__ void scale_bias_kernel(float *output, float *biases, int n, int size)
+{
+    int offset = blockIdx.x * blockDim.x + threadIdx.x;
+    int filter = blockIdx.y;
+    int batch = blockIdx.z;
+
+    if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter];
+}
+
+void scale_bias_gpu(float *output, float *biases, int batch, int n, int size)
+{
+    dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
+    dim3 dimBlock(BLOCK, 1, 1);
+
+    scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+    __shared__ float part[BLOCK];
+    int i,b;
+    int filter = blockIdx.x;
+    int p = threadIdx.x;
+    float sum = 0;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < size; i += BLOCK){
+            int index = p + i + size*(filter + n*b);
+            sum += (p+i < size) ? delta[index]*x_norm[index] : 0;
+        }
+    }
+    part[p] = sum;
+    __syncthreads();
+    if (p == 0) {
+        for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i];
+    }
+}
+
+void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+    backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void add_bias_kernel(float *output, float *biases, int n, int size)
+{
+    int offset = blockIdx.x * blockDim.x + threadIdx.x;
+    int filter = blockIdx.y;
+    int batch = blockIdx.z;
+
+    if(offset < size) output[(batch*n+filter)*size + offset] += biases[filter];
+}
+
+void add_bias_gpu(float *output, float *biases, int batch, int n, int size)
+{
+    dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
+    dim3 dimBlock(BLOCK, 1, 1);
+
+    add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size)
+{
+    __shared__ float part[BLOCK];
+    int i,b;
+    int filter = blockIdx.x;
+    int p = threadIdx.x;
+    float sum = 0;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < size; i += BLOCK){
+            int index = p + i + size*(filter + n*b);
+            sum += (p+i < size) ? delta[index] : 0;
+        }
+    }
+    part[p] = sum;
+    __syncthreads();
+    if (p == 0) {
+        for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
+    }
+}
+
+void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
+{
+    backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size);
+    check_error(cudaPeekAtLastError());
+}
+
+void forward_local_layer_gpu(local_layer l, network_state state)
+{
+    int i;
+    int m = l.n;
+    int k = l.size*l.size*l.c;
+    int n = local_out_height(l)*
+        local_out_width(l);
+
+    fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
+    for(i = 0; i < l.batch; ++i){
+        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, l.col_image_gpu);
+        float * a = l.filters_gpu;
+        float * b = l.col_image_gpu;
+        float * c = l.output_gpu;
+        gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
+    }
+
+    if(l.batch_normalize){
+        if(state.train){
+            fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_mean_gpu, l.mean_gpu);   
+            fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_variance_gpu, l.variance_gpu);
+
+            scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1);
+            axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
+            scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1);
+            axpy_ongpu(l.n, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
+
+            // cuda_pull_array(l.variance_gpu, l.mean, l.n);
+            // printf("%f\n", l.mean[0]);
+
+            copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+            normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_h*l.out_w);
+            copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
+        } else {
+            normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.n, l.out_h*l.out_w);
+        }
+
+        scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
+    }
+    add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
+
+    activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
+}
+
+void backward_local_layer_gpu(local_layer l, network_state state)
+{
+    int i;
+    int m = l.n;
+    int n = l.size*l.size*l.c;
+    int k = local_out_height(l)*
+        local_out_width(l);
+
+    gradient_array_ongpu(l.output_gpu, m*k*l.batch, l.activation, l.delta_gpu);
+
+    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k);
+
+    if(l.batch_normalize){
+        backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.scale_updates_gpu);
+
+        scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
+
+        fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_mean_delta_gpu, l.mean_delta_gpu);
+        fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_variance_delta_gpu, l.variance_delta_gpu);
+        normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.delta_gpu);
+    }
+
+    for(i = 0; i < l.batch; ++i){
+        float * a = l.delta_gpu;
+        float * b = l.col_image_gpu;
+        float * c = l.filter_updates_gpu;
+
+        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, l.col_image_gpu);
+        gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
+
+        if(state.delta){
+            float * a = l.filters_gpu;
+            float * b = l.delta_gpu;
+            float * c = l.col_image_gpu;
+
+            gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
+
+            col2im_ongpu(l.col_image_gpu, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
+        }
+    }
+}
+
+void pull_local_layer(local_layer layer)
+{
+    cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
+    cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+    if (layer.batch_normalize){
+        cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
+        cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
+        cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
+    }
+}
+
+void push_local_layer(local_layer layer)
+{
+    cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
+    cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+    if (layer.batch_normalize){
+        cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
+        cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
+        cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
+    }
+}
+
+void update_local_layer_gpu(local_layer layer, int batch, float learning_rate, float momentum, float decay)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+
+    axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+    scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
+
+    axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
+    scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
+
+    axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
+    axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
+    scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
+}
+
+
diff --git a/src/local_layer.c b/src/local_layer.c
new file mode 100644
index 0000000..c0f52cb
--- /dev/null
+++ b/src/local_layer.c
@@ -0,0 +1,275 @@
+#include "local_layer.h"
+#include "utils.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
+#include <stdio.h>
+#include <time.h>
+
+int local_out_height(local_layer l)
+{
+    int h = l.h;
+    if (!l.pad) h -= l.size;
+    else h -= 1;
+    return h/l.stride + 1;
+}
+
+int local_out_width(local_layer l)
+{
+    int w = l.w;
+    if (!l.pad) w -= l.size;
+    else w -= 1;
+    return w/l.stride + 1;
+}
+
+local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
+{
+    int i;
+    local_layer l = {0};
+    l.type = LOCAL;
+
+    l.h = h;
+    l.w = w;
+    l.c = c;
+    l.n = n;
+    l.batch = batch;
+    l.stride = stride;
+    l.size = size;
+    l.pad = pad;
+
+    int out_h = local_out_height(l);
+    int out_w = local_out_width(l);
+    int locations = out_h*out_w;
+    l.out_h = out_h;
+    l.out_w = out_w;
+    l.out_c = n;
+    l.outputs = l.out_h * l.out_w * l.out_c;
+    l.inputs = l.w * l.h * l.c;
+
+    l.filters = calloc(c*n*size*size*locations, sizeof(float));
+    l.filter_updates = calloc(c*n*size*size*locations, sizeof(float));
+
+    l.biases = calloc(l.outputs, sizeof(float));
+    l.bias_updates = calloc(l.outputs, sizeof(float));
+
+    // float scale = 1./sqrt(size*size*c);
+    float scale = sqrt(2./(size*size*c));
+    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
+
+    l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
+    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
+    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
+
+#ifdef GPU
+    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size*locations);
+    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size*locations);
+
+    l.biases_gpu = cuda_make_array(l.biases, l.outputs);
+    l.bias_updates_gpu = cuda_make_array(l.bias_updates, l.outputs);
+
+    l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
+    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
+    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+
+#endif
+    l.activation = activation;
+
+    fprintf(stderr, "Local Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+
+    return l;
+}
+
+void forward_local_layer(const local_layer l, network_state state)
+{
+    int out_h = local_out_height(l);
+    int out_w = local_out_width(l);
+    int i, j;
+    int locations = out_h * out_w;
+
+    for(i = 0; i < l.batch; ++i){
+        copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
+    }
+
+    for(i = 0; i < l.batch; ++i){
+        float *input = state.input + i*l.w*l.h*l.c;
+        im2col_cpu(input, l.c, l.h, l.w, 
+                l.size, l.stride, l.pad, l.col_image);
+        float *output = l.output + i*l.outputs;
+        for(j = 0; j < locations; ++j){
+            float *a = l.filters + j*l.size*l.size*l.c*l.n;
+            float *b = l.col_image + j;
+            float *c = output + j;
+
+            int m = l.n;
+            int n = 1;
+            int k = l.size*l.size*l.c;
+
+            gemm(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
+        }
+    }
+    activate_array(l.output, l.outputs*l.batch, l.activation);
+}
+
+void backward_local_layer(local_layer l, network_state state)
+{
+    int i, j;
+    int locations = l.out_w*l.out_h;
+
+    gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
+
+    for(i = 0; i < l.batch; ++i){
+        axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
+    }
+
+    for(i = 0; i < l.batch; ++i){
+        float *input = state.input + i*l.w*l.h*l.c;
+        im2col_cpu(input, l.c, l.h, l.w, 
+                l.size, l.stride, l.pad, l.col_image);
+
+        for(j = 0; j < locations; ++j){ 
+            float *a = l.delta + i*l.outputs + j;
+            float *b = l.col_image + j;
+            float *c = l.filter_updates + j*l.size*l.size*l.c*l.n;
+            int m = l.n;
+            int n = l.size*l.size*l.c;
+            int k = 1;
+
+            gemm(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
+        }
+
+        if(state.delta){
+            for(j = 0; j < locations; ++j){ 
+                float *a = l.filters + j*l.size*l.size*l.c*l.n;
+                float *b = l.delta + i*l.outputs + j;
+                float *c = l.col_image + j;
+
+                int m = l.size*l.size*l.c;
+                int n = 1;
+                int k = l.n;
+
+                gemm(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
+            }
+
+            col2im_cpu(l.col_image, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
+        }
+    }
+}
+
+void update_local_layer(local_layer l, int batch, float learning_rate, float momentum, float decay)
+{
+    int locations = l.out_w*l.out_h;
+    int size = l.size*l.size*l.c*l.n*locations;
+    axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
+    scal_cpu(l.outputs, momentum, l.bias_updates, 1);
+
+    axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
+    axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
+    scal_cpu(size, momentum, l.filter_updates, 1);
+}
+
+#ifdef GPU
+
+void forward_local_layer_gpu(const local_layer l, network_state state)
+{
+    int out_h = local_out_height(l);
+    int out_w = local_out_width(l);
+    int i, j;
+    int locations = out_h * out_w;
+
+    for(i = 0; i < l.batch; ++i){
+        copy_ongpu(l.outputs, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
+    }
+
+    for(i = 0; i < l.batch; ++i){
+        float *input = state.input + i*l.w*l.h*l.c;
+        im2col_ongpu(input, l.c, l.h, l.w, 
+                l.size, l.stride, l.pad, l.col_image_gpu);
+        float *output = l.output_gpu + i*l.outputs;
+        for(j = 0; j < locations; ++j){
+            float *a = l.filters_gpu + j*l.size*l.size*l.c*l.n;
+            float *b = l.col_image_gpu + j;
+            float *c = output + j;
+
+            int m = l.n;
+            int n = 1;
+            int k = l.size*l.size*l.c;
+
+            gemm_ongpu(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
+        }
+    }
+    activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
+}
+
+void backward_local_layer_gpu(local_layer l, network_state state)
+{
+    int i, j;
+    int locations = l.out_w*l.out_h;
+
+    gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
+    for(i = 0; i < l.batch; ++i){
+        axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
+    }
+
+    for(i = 0; i < l.batch; ++i){
+        float *input = state.input + i*l.w*l.h*l.c;
+        im2col_ongpu(input, l.c, l.h, l.w, 
+                l.size, l.stride, l.pad, l.col_image_gpu);
+
+        for(j = 0; j < locations; ++j){ 
+            float *a = l.delta_gpu + i*l.outputs + j;
+            float *b = l.col_image_gpu + j;
+            float *c = l.filter_updates_gpu + j*l.size*l.size*l.c*l.n;
+            int m = l.n;
+            int n = l.size*l.size*l.c;
+            int k = 1;
+
+            gemm_ongpu(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
+        }
+
+        if(state.delta){
+            for(j = 0; j < locations; ++j){ 
+                float *a = l.filters_gpu + j*l.size*l.size*l.c*l.n;
+                float *b = l.delta_gpu + i*l.outputs + j;
+                float *c = l.col_image_gpu + j;
+
+                int m = l.size*l.size*l.c;
+                int n = 1;
+                int k = l.n;
+
+                gemm_ongpu(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
+            }
+
+            col2im_ongpu(l.col_image_gpu, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
+        }
+    }
+}
+
+void update_local_layer_gpu(local_layer l, int batch, float learning_rate, float momentum, float decay)
+{
+    int locations = l.out_w*l.out_h;
+    int size = l.size*l.size*l.c*l.n*locations;
+    axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
+    scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
+
+    axpy_ongpu(size, -decay*batch, l.filters_gpu, 1, l.filter_updates_gpu, 1);
+    axpy_ongpu(size, learning_rate/batch, l.filter_updates_gpu, 1, l.filters_gpu, 1);
+    scal_ongpu(size, momentum, l.filter_updates_gpu, 1);
+}
+
+void pull_local_layer(local_layer l)
+{
+    int locations = l.out_w*l.out_h;
+    int size = l.size*l.size*l.c*l.n*locations;
+    cuda_pull_array(l.filters_gpu, l.filters, size);
+    cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
+}
+
+void push_local_layer(local_layer l)
+{
+    int locations = l.out_w*l.out_h;
+    int size = l.size*l.size*l.c*l.n*locations;
+    cuda_push_array(l.filters_gpu, l.filters, size);
+    cuda_push_array(l.biases_gpu, l.biases, l.outputs);
+}
+#endif
diff --git a/src/local_layer.h b/src/local_layer.h
new file mode 100644
index 0000000..675a5fb
--- /dev/null
+++ b/src/local_layer.h
@@ -0,0 +1,31 @@
+#ifndef LOCAL_LAYER_H
+#define LOCAL_LAYER_H
+
+#include "cuda.h"
+#include "params.h"
+#include "image.h"
+#include "activations.h"
+#include "layer.h"
+
+typedef layer local_layer;
+
+#ifdef GPU
+void forward_local_layer_gpu(local_layer layer, network_state state);
+void backward_local_layer_gpu(local_layer layer, network_state state);
+void update_local_layer_gpu(local_layer layer, int batch, float learning_rate, float momentum, float decay);
+
+void push_local_layer(local_layer layer);
+void pull_local_layer(local_layer layer);
+#endif
+
+local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
+
+void forward_local_layer(const local_layer layer, network_state state);
+void backward_local_layer(local_layer layer, network_state state);
+void update_local_layer(local_layer layer, int batch, float learning_rate, float momentum, float decay);
+
+void bias_output(float *output, float *biases, int batch, int n, int size);
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
+
+#endif
+
diff --git a/src/network.c b/src/network.c
index 9bcb264..6c7461d 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,6 +8,7 @@
 
 #include "crop_layer.h"
 #include "connected_layer.h"
+#include "local_layer.h"
 #include "convolutional_layer.h"
 #include "deconvolutional_layer.h"
 #include "detection_layer.h"
@@ -59,6 +60,8 @@ char *get_layer_string(LAYER_TYPE a)
     switch(a){
         case CONVOLUTIONAL:
             return "convolutional";
+        case LOCAL:
+            return "local";
         case DECONVOLUTIONAL:
             return "deconvolutional";
         case CONNECTED:
@@ -112,6 +115,8 @@ void forward_network(network net, network_state state)
             forward_convolutional_layer(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             forward_deconvolutional_layer(l, state);
+        } else if(l.type == LOCAL){
+            forward_local_layer(l, state);
         } else if(l.type == NORMALIZATION){
             forward_normalization_layer(l, state);
         } else if(l.type == DETECTION){
@@ -150,6 +155,8 @@ void update_network(network net)
             update_deconvolutional_layer(l, rate, net.momentum, net.decay);
         } else if(l.type == CONNECTED){
             update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == LOCAL){
+            update_local_layer(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
@@ -219,6 +226,8 @@ void backward_network(network net, network_state state)
             if(i != 0) backward_softmax_layer(l, state);
         } else if(l.type == CONNECTED){
             backward_connected_layer(l, state);
+        } else if(l.type == LOCAL){
+            backward_local_layer(l, state);
         } else if(l.type == COST){
             backward_cost_layer(l, state);
         } else if(l.type == ROUTE){
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 8561372..ffd5c59 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -19,6 +19,7 @@ extern "C" {
 #include "avgpool_layer.h"
 #include "normalization_layer.h"
 #include "cost_layer.h"
+#include "local_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 #include "route_layer.h"
@@ -41,6 +42,8 @@ void forward_network_gpu(network net, network_state state)
             forward_convolutional_layer_gpu(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             forward_deconvolutional_layer_gpu(l, state);
+        } else if(l.type == LOCAL){
+            forward_local_layer_gpu(l, state);
         } else if(l.type == DETECTION){
             forward_detection_layer_gpu(l, state);
         } else if(l.type == CONNECTED){
@@ -85,6 +88,8 @@ void backward_network_gpu(network net, network_state state)
             backward_convolutional_layer_gpu(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             backward_deconvolutional_layer_gpu(l, state);
+        } else if(l.type == LOCAL){
+            backward_local_layer_gpu(l, state);
         } else if(l.type == MAXPOOL){
             if(i != 0) backward_maxpool_layer_gpu(l, state);
         } else if(l.type == AVGPOOL){
@@ -120,6 +125,8 @@ void update_network_gpu(network net)
             update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
         } else if(l.type == CONNECTED){
             update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
+        } else if(l.type == LOCAL){
+            update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
diff --git a/src/nightmare.c b/src/nightmare.c
index 0eb3ca1..1a78dd5 100644
--- a/src/nightmare.c
+++ b/src/nightmare.c
@@ -25,7 +25,7 @@ void calculate_loss(float *output, float *delta, int n, float thresh)
     }
 }
 
-void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh)
+void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm)
 {
     scale_image(orig, 2);
     translate_image(orig, -1);
@@ -85,7 +85,7 @@ void optimize_picture(network *net, image orig, int max_layer, float scale, floa
 
     //rate = rate / abs_mean(out.data, out.w*out.h*out.c);
 
-    normalize_array(out.data, out.w*out.h*out.c);
+    if(norm) normalize_array(out.data, out.w*out.h*out.c);
     axpy_cpu(orig.w*orig.h*orig.c, rate, out.data, 1, orig.data, 1);
 
     /*
@@ -123,6 +123,7 @@ void run_nightmare(int argc, char **argv)
     int max_layer = atoi(argv[5]);
 
     int range = find_int_arg(argc, argv, "-range", 1);
+    int norm = find_int_arg(argc, argv, "-norm", 1);
     int rounds = find_int_arg(argc, argv, "-rounds", 1);
     int iters = find_int_arg(argc, argv, "-iters", 10);
     int octaves = find_int_arg(argc, argv, "-octaves", 4);
@@ -160,7 +161,7 @@ void run_nightmare(int argc, char **argv)
             fflush(stderr);
             int layer = max_layer + rand()%range - range/2;
             int octave = rand()%octaves;
-            optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh);
+            optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm);
         }
         fprintf(stderr, "done\n");
         if(0){
diff --git a/src/parser.c b/src/parser.c
index b095294..277c6e2 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -15,6 +15,7 @@
 #include "dropout_layer.h"
 #include "detection_layer.h"
 #include "avgpool_layer.h"
+#include "local_layer.h"
 #include "route_layer.h"
 #include "list.h"
 #include "option_list.h"
@@ -27,6 +28,7 @@ typedef struct{
 
 int is_network(section *s);
 int is_convolutional(section *s);
+int is_local(section *s);
 int is_deconvolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
@@ -107,6 +109,27 @@ deconvolutional_layer parse_deconvolutional(list *options, size_params params)
     return layer;
 }
 
+local_layer parse_local(list *options, size_params params)
+{
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    int pad = option_find_int(options, "pad",0);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before local layer must output image.");
+
+    local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation);
+
+    return layer;
+}
+
 convolutional_layer parse_convolutional(list *options, size_params params)
 {
     int n = option_find_int(options, "filters",1);
@@ -402,6 +425,8 @@ network parse_network_cfg(char *filename)
         layer l = {0};
         if(is_convolutional(s)){
             l = parse_convolutional(options, params);
+        }else if(is_local(s)){
+            l = parse_local(options, params);
         }else if(is_deconvolutional(s)){
             l = parse_deconvolutional(options, params);
         }else if(is_connected(s)){
@@ -465,6 +490,10 @@ int is_detection(section *s)
 {
     return (strcmp(s->type, "[detection]")==0);
 }
+int is_local(section *s)
+{
+    return (strcmp(s->type, "[local]")==0);
+}
 int is_deconvolutional(section *s)
 {
     return (strcmp(s->type, "[deconv]")==0
@@ -626,6 +655,16 @@ void save_weights_upto(network net, char *filename, int cutoff)
 #endif
             fwrite(l.biases, sizeof(float), l.outputs, fp);
             fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+        } if(l.type == LOCAL){
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_local_layer(l);
+            }
+#endif
+            int locations = l.out_w*l.out_h;
+            int size = l.size*l.size*l.c*l.n*locations;
+            fwrite(l.biases, sizeof(float), l.outputs, fp);
+            fwrite(l.filters, sizeof(float), size, fp);
         }
     }
     fclose(fp);
@@ -684,6 +723,17 @@ void load_weights_upto(network *net, char *filename, int cutoff)
             if(gpu_index >= 0){
                 push_connected_layer(l);
             }
+#endif
+        }
+        if(l.type == LOCAL){
+            int locations = l.out_w*l.out_h;
+            int size = l.size*l.size*l.c*l.n*locations;
+            fread(l.biases, sizeof(float), l.outputs, fp);
+            fread(l.filters, sizeof(float), size, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_local_layer(l);
+            }
 #endif
         }
     }
diff --git a/src/yolo.c b/src/yolo.c
index 2abfa13..7da69f7 100644
--- a/src/yolo.c
+++ b/src/yolo.c
@@ -11,7 +11,7 @@
 
 char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
 
-void draw_yolo(image im, int num, float thresh, box *boxes, float **probs, char *label)
+void draw_yolo(image im, int num, float thresh, box *boxes, float **probs)
 {
     int classes = 20;
     int i;
@@ -20,8 +20,10 @@ void draw_yolo(image im, int num, float thresh, box *boxes, float **probs, char
         int class = max_index(probs[i], classes);
         float prob = probs[i][class];
         if(prob > thresh){
-            int width = pow(prob, 1./2.)*10;
-            printf("%f %s\n", prob, voc_names[class]);
+            int width = pow(prob, 1./2.)*10+1;
+            //width = 8;
+            printf("%s: %.2f\n", voc_names[class], prob);
+            class = class * 7 % 20;
             float red = get_color(0,class,classes);
             float green = get_color(1,class,classes);
             float blue = get_color(2,class,classes);
@@ -41,7 +43,6 @@ void draw_yolo(image im, int num, float thresh, box *boxes, float **probs, char
             draw_box_width(im, left, top, right, bot, width, red, green, blue);
         }
     }
-    show_image(im, label);
 }
 
 void train_yolo(char *cfgfile, char *weightfile)
@@ -97,21 +98,13 @@ void train_yolo(char *cfgfile, char *weightfile)
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
 
-        /*
-           image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
-           image copy = copy_image(im);
-           draw_yolo(copy, train.y.vals[113], 7, "truth");
-           cvWaitKey(0);
-           free_image(copy);
-         */
-
         time=clock();
         float loss = train_network(net, train);
         if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
 
         printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
-        if(i%1000==0){
+        if(i%1000==0 || i == 600){
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
             save_weights(net, buff);
@@ -183,8 +176,8 @@ void validate_yolo(char *cfgfile, char *weightfile)
     srand(time(0));
 
     char *base = "results/comp4_det_test_";
-    //list *plist = get_paths("data/voc.2007.test");
-    list *plist = get_paths("data/voc.2012.test");
+    list *plist = get_paths("data/voc.2007.test");
+    //list *plist = get_paths("data/voc.2012.test");
     char **paths = (char **)list_to_array(plist);
 
     layer l = net.layers[net.n-1];
@@ -384,7 +377,8 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
         convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
         if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
-        draw_yolo(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
+        draw_yolo(im, l.side*l.side*l.n, thresh, boxes, probs);
+        show_image(im, "predictions");
 
         show_image(sized, "resized");
         free_image(im);
diff --git a/src/yolo_kernels.cu b/src/yolo_kernels.cu
index f02b7a2..487e9bd 100644
--- a/src/yolo_kernels.cu
+++ b/src/yolo_kernels.cu
@@ -6,6 +6,7 @@ extern "C" {
 #include "parser.h"
 #include "box.h"
 #include "image.h"
+#include <sys/time.h>
 }
 
 #ifdef OPENCV
@@ -13,48 +14,108 @@ extern "C" {
 #include "opencv2/imgproc/imgproc.hpp"
 extern "C" image ipl_to_image(IplImage* src);
 extern "C" void convert_yolo_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
-extern "C" void draw_yolo(image im, int num, float thresh, box *boxes, float **probs, char *label);
+extern "C" void draw_yolo(image im, int num, float thresh, box *boxes, float **probs);
+
+static float **probs;
+static box *boxes;
+static network net;
+static image in   ;
+static image in_s ;
+static image det  ;
+static image det_s;
+static image disp ;
+static cv::VideoCapture cap;
+static float fps = 0;
+
+void *fetch_in_thread(void *ptr)
+{
+    cv::Mat frame_m;
+    cap >> frame_m;
+    IplImage frame = frame_m;
+    in = ipl_to_image(&frame);
+    rgbgr_image(in);
+    in_s = resize_image(in, net.w, net.h);
+    return 0;
+}
+
+void *detect_in_thread(void *ptr)
+{
+    float nms = .4;
+    float thresh = .2;
+
+    detection_layer l = net.layers[net.n-1];
+    float *X = det_s.data;
+    float *predictions = network_predict(net, X);
+    free_image(det_s);
+    convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
+    if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+    printf("\033[2J");
+    printf("\033[1;1H");
+    printf("\nFPS:%.0f\n",fps);
+    printf("Objects:\n\n");
+    draw_yolo(det, l.side*l.side*l.n, thresh, boxes, probs);
+    return 0;
+}
 
 extern "C" void demo_yolo(char *cfgfile, char *weightfile, float thresh)
 {
-    network net = parse_network_cfg(cfgfile);
+    printf("YOLO demo\n");
+    net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    detection_layer l = net.layers[net.n-1];
-    cv::VideoCapture cap(0);
-
     set_batch_network(&net, 1);
+
     srand(2222222);
-    float nms = .4;
+
+    cv::VideoCapture cam(0);
+    cap = cam;
+    if(!cap.isOpened()) error("Couldn't connect to webcam.\n");
+
+    detection_layer l = net.layers[net.n-1];
     int j;
-    box *boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
-    float **probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
+
+    boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
+    probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
     for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
 
+    pthread_t fetch_thread;
+    pthread_t detect_thread;
+
+    fetch_in_thread(0);
+    det = in;
+    det_s = in_s;
+
+    fetch_in_thread(0);
+    detect_in_thread(0);
+    disp = det;
+    det = in;
+    det_s = in_s;
+
     while(1){
-        cv::Mat frame_m;
-        cap >> frame_m;
-        IplImage frame = frame_m;
-        image im = ipl_to_image(&frame);
-        rgbgr_image(im);
-
-        image sized = resize_image(im, net.w, net.h);
-        float *X = sized.data;
-        float *predictions = network_predict(net, X);
-        convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
-        if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
-        printf("\033[2J");
-        printf("\033[1;1H");
-        printf("\nObjects:\n\n");
-        draw_yolo(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
-
-        free_image(im);
-        free_image(sized);
+        struct timeval tval_before, tval_after, tval_result;
+        gettimeofday(&tval_before, NULL);
+        if(pthread_create(&fetch_thread, 0, fetch_in_thread, 0)) error("Thread creation failed");
+        if(pthread_create(&detect_thread, 0, detect_in_thread, 0)) error("Thread creation failed");
+        show_image(disp, "YOLO");
+        free_image(disp);
         cvWaitKey(1);
+        pthread_join(fetch_thread, 0);
+        pthread_join(detect_thread, 0);
+
+        disp  = det;
+        det   = in;
+        det_s = in_s;
+
+        gettimeofday(&tval_after, NULL);
+        timersub(&tval_after, &tval_before, &tval_result);
+        float curr = 1000000.f/((long int)tval_result.tv_usec);
+        fps = .9*fps + .1*curr;
     }
 }
 #else
-extern "C" void demo_yolo(char *cfgfile, char *weightfile, float thresh){}
+extern "C" void demo_yolo(char *cfgfile, char *weightfile, float thresh){
+    fprintf(stderr, "YOLO demo needs OpenCV for webcam images.\n");
+}
 #endif
 
-- 
GitLab