UseLATEX.cmake: HTEX Document Building
Made Easy

Kenneth Moreland
Version 2.8.1

Contents

11 Description|

2 Downloadl

13 Basic Usage|
8.1 Using a Bibliography] 0.
8.2 Incoporating Images| oL
[3.3 Selecting a Default Bwld]
3.4 Force a peof Build| 0000000
3.5 Create Nothing by Detault|.
3.6 SyncleX-Enable itors|

|4 _Package Support|
AT Making an Index]
4.2 Making Multiple Indexes|. L.

4.3 Making a Glossary|] oo
4.4 Nomenclature Support| 0oL
4.5 multibib Support] o

A6 biblatex Support]

|5 Advanced Configurations|
5.1 Multipart INIEX Files|o o
0.2 Configuring IXIpX Files| oo oo
5.3 Building Multiple PIEX Documents] . . . -

entitying Dependent Files|00 0.
9.5 Adding Include Directories|
5.6 Specitying Command Line Arguments|

6 Frequently Asked Questions| 16

6.1 How do I process [& files on Windows?|. 16
6.2 How do I process IM1EX files on Mac O5 X7 16
63 How do I process With XalBTERY - - . - o« oo oo e 17
[6:4 How do T process with LuallTEX7]. « « « « v v v v v oo v e e 17
[6.5 Why does UseLATEX.cmake have to copy my tex files?] 17
[6-6 oW can nd a file not a tex, image, or bibliography?| . . . 18
6.7 Why is convert falling on Windows?| v v o v oo .. 18
6.8 How do I automate plot generation with command line programs?| 19
6.9 Why does make stop after each i1mage conversion?| 21
6.10 How do I resolve \write 18 errors with pstricks or pdftricks?| . . . 21
6.11 Why is UseLATEX.cmake complaining about image file names?| . 22
16.12 Why are there no FORCE_PS or FORCE_SAFEPDF options?| 22
6.13 Why 1s my 1mage file not being automatically converted?| 23
[6.14 Why are some files in IMAGE_DIRS not processed?| 23
[6.15 is the MANGLE_TARGET_NAMES option deprecated?| 24
[6.16 What is the point of the default IXIEX arguments?] 24
6.1 y do the ps2pdf arguments have the # character in them?| . . 25
7 Acknowledgments| 26
|A- Sample CMakelLists.txt| 27

1 Description

Compiling ITEX files into readable documents is actually a very involved pro-
cess. Although CMake comes with FindLATEX.cmake, it does nothing for you
other than find the commands associated with IXTEX. I like using CMake to
build my BTEX documents, but creating targets to do it is actually a pain. Thus,
I’'ve compiled a bunch of macros that help me create targets in CMake into a
file T call “UseLATEX.cmake.” Here are some of the things UseLATEX.cmake
handles:

e Runs BTEX multiple times to resolve links.

e Can run bibtex, makeindex, and makeglossaries to make bibliographies, in-
dexes, and/or glossaries.

e Optionally runs configure on your IXTEX files to replace @ VARTABLE® with
the equivalent CMake variable.

e Automatically finds png, jpeg, eps, pdf, svg, tiff, gif, bmp, and other image
files and converts them to formats latex and pdflatex understand.

e Reduces INTEX’s overly verbose output and searches for messages that are
more likely to require attention.

2 Download

UseLATEX.cmake is available at this repo:

https://gitlab.kitware.com/kmorel/UseLATEX

3 Basic Usage

Using UseLATEX.cmake is easy. For a basic I’ TEX file, simply include the file in
your CMakeLists.txt and use the add_latex_document command to make targets
to build your document. For an example document in the file MyDoc.tex, you
could establish a build with the following simple CMakeLists.txt.

project (MyDoc NONE)

include (UseLATEX. cmake)
add_latex_document (MyDoc.tex)

The add_latex_document adds the following targets to create a readable
document from MyDoc.tex:

dvi Creates MyDoc.dvi.

pdf Creates MyDoc.pdf using pdflatex. Requires the PDFLATEX_COMPILER
CMake variable to be set.

ps Creates MyDoc.ps. Requires the DVIPS_CONVERTER CMake variable to be
set.

safepdf Creates MyDoc.pdf from MyDoc.ps using ps2pdf. Many publishers pre-
fer pdfs are created this way. Requires the PS2PDF_CONVERTER CMake
variable to be set.

html Creates html pages. Requires the HTLATEX_COMPILER CMake variable to
be set.

clean To CMake’s default clean target, the numerous files that ETEX often
generates are added.

auxclean Deletes the auxiliary files from IATEX, but not the generated input
files. Sometimes IATEX gets itself in a bad state where the auxiliary files
need to be deleted to successfully build again, and this target does that
without also deleting other build files (such as converted image files or
files from unrelated targets in the same directory).

One caveat about using UseLATEX.cmake is that you are required to do an
out-of-source build. That is, CMake must be run in a directory other than the

https://gitlab.kitware.com/kmorel/UseLATEX

source directory. This is necessary as latex is very picky about file locations, and
the relative locations of some generated or copied files can only be maintained
if everything is copied to a separate directory structure. For more details and
hints on workarounds, see the ‘{Why does UseLATEX.cmake have to copy my|

[tex files?’ frequently asked question in Section

3.1 Using a Bibliography

For any technical document, you will probably want to maintain a BIBTEX
database of papers you are referencing in the paper. You can incorporate your
.bib files by adding them after the BIBFILES argument to the add_latex -
document command.

add_latex_document (MyDoc.tex BIBFILES MyDoc.bib)

This will automatically add targets to build your bib file and link it into your
document. To use the BIBTEX file in your BTEX file, just do as you normally
would with \cite commands and bibliography commands:

\bibliographystyle{plain}
\bibliography{MyDoc}

You can list as many bibliography files as you like.

3.2 Incoporating Images

To be honest, incorporating images into I TEX documents can be a real pain.
This is mostly because the format of the images needs to depend on the version
of BTEX you are running (latex vs. pdflatex). With these CMake macros, you
only need to convert your raster graphics to png or jpeg format and your vector
graphics to eps or pdf format. Place them all in a common directory (e.g.
images) and then use the IMAGE_DIRS option to the add_latex_document macro
to point to them. UseLATEX.cmake will take care of the rest.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
)

If you want to break up your image files in several different directories, you
can do that, too. Simply provide multiple directories after the IMAGE DIRS
option.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS icons figures
)

Alternatively, you could list all of your image files separatly with the IMAGES
option.

set (MyDocImages
logo.eps
icons/next.png
icons/previous.png
figures/flowchart.eps
figures/team. jpeg
)

add_latex_document (MyDoc.tex
IMAGES ${MyDocImages}
)

For every image file specified and found with the IMAGE_DIRS and IMAGES
options, UseLATEX.cmake adds makefile targets to use ImageMagick’s magick
or convert to convert the file types to those appropriate for the buildﬂ If you do
not have ImageMagick, you can get it for free from http://www.imagemagick.
org. CMake will also give you a LATEX_SMALL_IMAGES option that, when on,
will downsample raster images. This can help speed up building and viewing
documents. It will also make the output image sizes smaller.

UseLATEX.cmake will occasionally use a conversion program other than Im-
ageMagick’s magick. For example, ps2pdf will be used when converting eps to
pdf to get around a problem where ImageMagick drops the bounding box infor-
mation. When available, the pdftops from the Poppler utilities will be used to
convert pdf to eps because it better preserves vector graphics and color spaces.
At any rate, you do not need to worry about setting the appropriate image con-
version program. UseLATEX.cmake will automatically select the best one and
issue errors or warnings if there is a problem.

The IMAGE_DIRS option tries to identify image files by their extensions. The
current list of image extensions UseLATEX.cmake checks for is: .bmp, .bmp2,
.Jbmp3, .dem, .dcx, .ico, .gif, .jpeg, .jpg, .eps, .pdf, .pict, .png, .ppm, .tif, and
tiff. If you are trying to use an image format that is supported by ImageMagick
but is not recognized by UseLATEX.cmake, you can specify the files directly with
the IMAGES option instead. UseLATEX.cmake will assume that any file specified
with the IMAGES option is an image file regardless of its extension.

IThe convert program was essentially renamed magick in ImageMagick 7.0. Most, but not
all, recent installations provide both. UseLATEX.cmake looks for both just in case.

http://www.imagemagick.org
http://www.imagemagick.org

Both the IMAGE_DIRS and IMAGES can be used together. The combined set
of image files will be processed. If you wish to provide a separate eps file and
pdf or png file, that is OK, too. UseLATEX.cmake will handle that by copying
over the correct file instead of converting.

Depending on what program is launched to build your BTEX file (either latex
or pdflatex, and UseLATEX.cmake supports both), a particular format for your
image is required. As stated, UseLATEX.cmake handles the necessary conver-
sions for you. However, you will not know in advance what file extension is used
on the image. That is no problem. Simply leave out the file extension in the
file name argument to \includegraphics and KTEX will find the file with the
appropriate extension for you.

Note that in order to ensure that the resulting image files are placed in
the appropriate directory, you are required to give relative paths for images
and image directories. For example, IMAGE_DIRS ${CMAKE_CURRENT_SOURCE_-
DIR}/images will fail. Use IMAGE DIRS images instead.

3.3 Selecting a Default Build

By default, when you use add_latex_document and then run make with no
arguments, pdflatex is used to create a pdf file. You can of course always specify
a target described at the top of Section [3|to build a different document format.
However, for convenience you can change the default build.

UseLATEX.cmake defines the CMake variable LATEX DEFAULT BUILD that
controls which build is performed by default. Valid values for this variable
are pdf, dvi, ps, safepdf, and html. This variable is usually initialized to pdf,
but you can override this behavior by setting the LATEX DEFAULT BUILD envi-
ronment variable before the first configuration. Thus, if you have a preference
for a particular default build, you can set your system environment to use it by
default for all UseLATEX.cmake builds.

3.4 Force a Type of Build

UseLATEX.cmake does its best to make TEX builds as portable as possible,
but there might be a number of technical reasons why a particular document
can only be built using one type of system. If that is the case, it is best if the
configuration only supports one type of build.

add_latex_document has several options to force the document generation
to a particular type of build. If you give the option FORCE_PDF, only the pdf
targets that use the pdflatex command are created.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
FORCE_PDF
)

Likewise, the FORCE_DVI option restricts add_latex_document to targets that
use the latex command. In addition to building dvi files, FORCE_DVI also allows
ps generation from the dvi files and “safe” pdf generation from the ps files.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
FORCE_PS
)

Finally, the FORCE_HTML option will restrict targets that are used for html
generation.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
FORCE_HTML
)

The behavior is undefined if more than one force option is given.

3.5 Create Nothing by Default

Sometimes it is desirable to disable the building of your BTEX document by
default (that is, not build it with the all target). This is convenient when
including I*TEX documentation with some other source to build such as when
you are documenting a library. To remove all targets from the default, simply
add the EXCLUDE_FROM_ALL option to add_latex_document.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
EXCLUDE_FROM_ALL
)

3.6 SyncTeX-Enabled Editors

Some implementations of IXTEX compilers have a feature called SyncTeX that
allows an editor or viewer to link between the compiled version of the document
(such as a pdf) and the original BTEX source code. The most common way to
do this is to add -synctex=1 to the pdflatex command. This will create a file
named (base-name).synctex.gz where each part of the final document points to
the original XTEX files.

However, there is a problem. UseLATEX.cmake copies all of the input M TEX
source files to an out-of-source build directory (see Section for more infor-
mation on why). But the BTEX compiler does not know that. Thus, the created
(base-name).synctex.gz will point to the temporary files in the build directory
rather than your original source files.

UseLATEX.cmake can add commands to the make targets that “correct”
the (base-name).synctex.gz. To add these commands, simply turn on the LA-
TEX_USE_SYNCTEX in ccmake or equivalent CMake configuring tool. When this
option is on, the -synctex=1 argument is added to the IXTEX compile commands
(settable with the LATEX_SYNCTEX FLAGS variable) and a command is added to
targets that will find files in (base-name).synctex.gz and change their paths to
the original files in the source directory.

4 Package Support

Modern IXTEX distributions provide a great many packages to provide additional
features to the document building process. A great many more packages are
available in online package distributions. The vast majority of these packages
provide features that are self contained within the IXTEX call itself. That is, the
build process does not have to change to accommodate these packages.

That said, there are a small number of packages that require supplementary
programs to be run or to otherwise change the build process. These packages
require special options to add_latex_document, which are documented here.

4.1 Making an Index

You can make an index in a ETEX document by using the makeidx package.
However, this package requires you to run the makeindex program. Simply add
the USE_INDEX option anywhere in the add_latex_document arguments, and
makeindex will automatically be added to the build.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
USE_INDEX
)

4.2 Making Multiple Indexes

The multind package allows you to create multiple indexes in a single IXTEX
document. For example, when documenting a software library you might want
to have a general index of terms and a second index of function names.

The way the multind package works is that it creates a separate index file
for each of the indexes being created, and the makeindex program must be run

independently on each of them. To get UseLATEX.cmake to run makeindex on
all of the required index file, list all of the indexes created with the INDEX_—
NAMES option of add_latex_document. For example, in a I#TEX document that
declares two indexes like the following

\usepackage{multind}
\makeindex{general}
\makeindex{functions}

you would name the indexes in add_latex_document like the following.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
USE_INDEX
INDEX_NAMES general functions
)

4.3 Making a Glossary

There are multiple ways to make a glossary in a INTEX document, but the glos-
saries package provides one of the most convenient ways of doing so. Like the
makeidx package, glossaries requires running makeindex or xindy for building aux-
iliary files. However, building the glossary files can be more complicated as there
can be different sets of glossary files with different extensions. UseLATEX.cmake
will handle that for you. It does it in a way similar to the makeglossary command,
but in a more portable way. Simply add the USE_GLOSSARY option anywhere in
the add_latex_document arguments, and the glossary creating will be handled
for you.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
USE_GLOSSARY
)

4.4 Nomenclature Support

The nomencl package provides a mechanism to collect nomenclature and print
it together in a single section. The nomencl behaves very similarly to glossaries
(described in Section including running the makeindex command. However,
the arguments to makeindex are a bit different (to avoid clashes with creating
glossaries), and unfortunately nomencl provides no hints in the auxiliary file

about it. Thus, UseLATEX.cmake provides a special USE_NOMENCL option to
add_latex_document to add the necessary commands to build the nomenclature.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
USE_NOMENCL
)

It should be noted that this feature only works with nomencl version 4.0 or
later. The nomencl package changed how makeindex is called to make it compati-
ble with indices and glossaries. The correct version of nomencl is easily identified
as the one that uses the \makenomenclature and \printnomenclature com-
mands (as opposed to the old \makeglossary and \printglossary commands).
If you are using an older version of nomencl, you are best off to update for a
number of reasons.

4.5 multibib Support

The multibib package provides a mechanism to create a set of distinct bibliogra-
phies that are not necessarily associated with sections of the document. Part
of the operation of this package creates multiple ITEX auxiliary files that need
to be processed independently with BIBTEX. Consequently, the build needs to
be modified to run BIBTEX multiple times with different inputs. This can be
achieved with the MULTIBIB_NEWCITES argument to add_latex_document.

As an example, consider the following usage of the multibib package, par-
tially taken from its documentation. It creates a set of distinct citation com-
mands named own, submitted, and internal with the section heads Own Work,
Submitted Work, and Master Theses and Ph.D. Theses respectively. They
collectively use the bibliography files own.bib, submitted.bib, techreports.bib, and
theses.bib.

\newcites{own,submitted, internall}’,
{0wn Work,%
Submitted Work,Y%
{Technical Reports, Master Theses and Ph.D. Theses}}

\bibliographyown{own.bib}

\bibliographysubmitted{submitted.bib}

\bibliographyinternal{techreports.bib,theses.bib}

10

The three suffixes specified to the \newcite command and the four bibliog-
raphy files referenced must all be specified in the add_latex_document command
with the MULTIBIB_NEWCITES and BIBFILES arguments, respectively.

add_latex_document (MyDoc.tex
BIBFILES own.bib submitted.bib techreports.bib theses.bib
MULTIBIB_NEWCITES own submitted internal
)

4.6 biblatex Support

The biblatex package provides an alternate mechanism for building bibliogra-
phies that has many options not available to the standard bibliography com-
mands. The package (typically) requires an external program named biber,
which is an alternative to the standard bibtex command.

Thus, to support the biblatex package, the build system must run biber in-
stead of bibtex. This is done simply with UseLATEX.cmake by adding the USE_-
BIBLATEX option to add_latex_document.

add_latex_document (MyDoc.tex
BIBFILES MyDoc.bib
USE_BIBLATEX
)

5 Advanced Configurations

This document has heretofore described using UseLATEX.cmake for a single
KTEX document and associated files (bibliographies, images, indices, etc.). How-
ever there are many configurations to document building that extend beyond
this simple scenario including multipart files, multiple documents, and depended
builds.

5.1 Multipart ETEX Files

Often, it is convenient to split a KTEX document into multiple files and use
the BXTEX \input or \include command to put them back together. To do
this, all the files have to be located together. UseLATEX.cmake can take care
of that, too. Simply add the INPUTS argument to add_latex_document to copy
these files along with the target tex file. Build dependencies to these files is also
established.

add_latex_document (MyDoc.tex
INPUTS Chapterl.tex Chapter2.tex Chapter3.tex Chapter4.tex

11

BIBFILES MyDoc.bib
IMAGE_DIRS images
USE_INDEX

)

As far as UseLATEX.cmake is concerned, input files do not necessarily have to
be tex files. For example, you might be including the contents of a text file into
your document with the \VerbatimInput command of the fancyvrb package. In
fact, you could also add graphic files as inputs, but you would not get the extra
conversion features described in Section

5.2 Configuring BTEX Files

Sometimes it is convenient to control the build options of your tex file with
CMake variables. You can achieve this by using the CONFIGURE argument to
add_latex_document.

add_latex_document (MyDoc.tex
INPUTS Chapterl.tex Chapter2.tex Chapter3.tex Chapter4.tex
CONFIGURE MyDoc.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
USE_INDEX
)

In the above example, in addition to copying MyDoc.tex to the binary di-
rectory, UseLATEX.cmake will configure MyDoc.tex. That is, it will find all
occurrences of @QVARTABLE® and replace that string with the current CMake
variable VARIABLE.

With the CONFIGURE argument you can list the target tex file (as shown
above) as well as any other tex file listed in the INPUTS argument.

add_latex_document (MyDoc.tex
INPUTS ChilConfig.tex Chl.tex Ch2Config.tex
Ch2.tex Ch3Config Ch3.tex
CONFIGURE ChlConfig.tex Ch2Config.tex Ch3Config.tex
BIBFILES MyDoc.bib
IMAGE_DIRS images
USE_INDEX
)

Be careful when using the CONFIGURE option. Unfortunately, the @ symbol
is used by KTEX in some places. For example, when establishing a tabular
environment, an @ is used to define the space between columns. If you use

12

it more than once, then UseLATEX.cmake will erroneously replace part of the
definition of your columns for a macro (which is probably an empty string).
This can be particularly troublesome to debug as IXTEX will give an error in a
place that, in the original document, is legal. Hence, it is best to only configure
tex files that contain very little text of the actual document and instead are
mostly setup and options.

5.3 Building Multiple ETEX Documents

The most common use for UseLATEX.cmake is to build a single document, such
as a paper you are working on. However, some use cases involve building several
documents at one time.

Multiple ETEX documents in the same CMake project can be created by sim-
ply calling add_latex_document multiple times. Each call to add_latex_docu-
ment will create its own set of unique targets that will be added as dependencies
of dvi, pdf, ps, safepdf and html.

Consider the following code.

add_latex_document (MyDocl.tex)
add_latex_document (MyDoc2.tex)

In the example above, the first call to add_latex_document will create targets
named MyDocl_dvi, MyDocl_pdf, MyDocl_ps, etc. whereas the second call
will create targets named MyDoc2_*. Calling dvi, pdf, etc. will execute the
respective targets for the two documents.

The EXCLUDE_FROM_DEFAULTS option suppresses these links to the docu-
ment’s targets.

add_latex_document (MyDocl.tex)
add_latex_document (MyDoc2.tex)
add_latex_document (MyDoc3.tex EXCLUDE_FROM_DEFAULTS)

In this augmented example, MyDocl and MyDoc2 are built when targets
such as dvi and pdf are called, but MyDoc3 is not. Note, however, that in this
example MyDoc3 is still built as part of the all target that CMake sets as the
default build target. Use EXCLUDE_FROM_ALL to remove a document from the
default all build. EXCLUDE_FROM_ALL and EXCLUDE_FROM_DEFAULTS can be used
together or independently.

An issue that can come up in larger builds with multiple I TEX documents
is a name collision. If two subdirectories each have a ITEX document with the
same .tex file in it, then the respective calls to add_latex_document will create
the same target names, which CMake does not allow. One way around this
problem is to rename the files to be unique (so that add_latex document will

13

create unique target names). But a more convenient way is to use the TARGET_~
NAME option to change the target names. For example, consider the following
use of TARGET_NAME.

add_latex_document (doc.tex TARGET_NAME MyDocl)

This will change the behavior of add_latex document to create targets
named MyDocl_dvi, MyDocl_pdf, MyDocl _ps, etc. instead of doc_dvi, doc_pdf,
doc_ps, etc.

5.4 Identifying Dependent Files

In some circumstances, CMake’s configure mechanism is not sufficient for cre-
ating input files. Input IXTEX files might be auto-generated by any number of
other mechanisms.

If this is the case, simply add the appropriate CMake commands to generate
the input files, and then add that file to the DEPENDS option of add_latex_doc-—
ument. To help you build the CMake commands to place the generated files in
the correct place, you can use the LATEX_GET_OUTPUT_PATH convenience
function to get the output path.

latex_get_output_path(output_dir)

add_custom_command (QUTPUT ${output_dir}/generated_file.tex
COMMAND tex_file_generate_exe
ARGS ${output_dir}/generated_file.tex
)

add_latex_document (MyDoc.tex DEPENDS generated_file.tex)

5.5 Adding Include Directories

It is usually best practice to collect XTEX input files in a single directory with a
logical set of subdirectories, which can be referenced within the XTEX document
using relative paths. However, it is sometimes convenient to search for files in
directories other than the build directory.

For example, let us say that we have two reports that you want to combine
into a single combined report. For any number of technical reasons, it could
be desirable to place the two original reports untouched in subdirectories and
have the tex file for the combine report in the main directory and including the
sub-reports. However, if those sub-reports are including files that are relative
to their respective subdirectories, for example including images for figures, then
KTEX will produce an error because it will be looking for those files in the main
directory.

14

We can get around this problem by using the INCLUDE_DIRECTORIES option
to add_latex_document. Simply add the subdirectories to the INCLUDE_DIREC-
TORIES list and ITEX will look for included files locally in those directories.
Here is an example of how that might look to include image files.

add_latex_document (UberReport.tex
INPUTS reportl/Reportl.tex report2/Report2.tex
IMAGE_DIRS reportl/images report2/images
INCLUDE_DIRECTORIES reportl report2
)

Note that the INCLUDE_DIRECTORIES option should be used with care. If a
file with the same name exists in multiple included directories, IXTEX might not
pick up the file you are expecting. (IWTEX will first look in the build directory,
then the directories listed in INCLUDE_DIRECTORIES in the order given, and then
system directories.) Thus, in the previous example if both reports had image
files with the same name, the second report will likely include images from the
first report.

5.6 Specifying Command Line Arguments

It is usually safest to let UseLATEX.cmake set the arguments to the BTEX com-
mands for you. However, there are some rare cases where you may need to
add your own command line options. For example, you may need to add a flag
like ~shell-escape or ——enable-writel8 to enable some packages (see Section
for details).

One way to add flags to the IXTEX compile is to add them to the LATEX -
COMPILER_FLAGS CMake variable. This is particularly useful if you want to add
a flag temporarily that does not always need to be set. For example, you could
add —draftmode to turn on draft mode and suppress the final output (for testing
purposes).

However, this option is tedious and confusing if this is an option that has to
be added every time to make the build work. If you want your CMakeLists.txt to
automatically add this option every time, you can do so using the COMPILER -
FLAGS target property. This property is attached to the (doc)_dvi or (doc)_-
pdf target, where (doc) is the name of the BTEX document being created (as
described in Section . The text in this property is added to the command
line when executing latex or pdflatex.

This target property can be added using the set_target_properties CMake
function. Here is an example that adds ——enable-writel18 to both the dvi and
pdf builds.

add_latex_document (HelloWorld.tex)

set_target_properties(HelloWorld_dvi HelloWorld_pdf

15

PROPERTIES COMPILER_FLAGS "--enable-writel8"
)

Be aware that different distributions of XTEX may accept different command
line arguments. By adding compiler flags this way, your BTEX document may
not compile correctly on machines that are not your own.

6 Frequently Asked Questions

This section includes resolutions to common questions and issues concerning use

of UseLATEX.cmake and with ETEX in general.

6.1 How do I process BTEX files on Windows?

I have successfully used two different ports of LaTeX for windows: the cygwin
port (http://www.cygwin.com/) and the MikTEX port (http://www.miktex.
org/)).

If you use the cygwin port of KIEX, you must also use the cygwin
port of CMake, make, and ImageMagick. If you use the MikTEX port of
ETEX, you must use the CMake from http://www.cmake. org/HTML/Download.
html, the ImageMagick port from http://www.imagemagick.org/script/
binary-releases.php#windows, and a native build tool like MSVC or the GNU
make port at http://unxutils.sourceforge.net/. Do not use the “native”
CMake program with any cygwin programs or the cygwin CMake program with
any non-cygwin programs. This issue at hand is that the cygwin ports create
and treat filenames differently then other windows programsﬂ

Also be aware that if you have images in your document, there are numerous
problems that can occur on Windows with the ImageMagick convert program.
See Section [6.7] for more information.

6.2 How do I process ETEX files on Mac OS X?

Using ETEX on Mac OS X is fairly straightforward because this OS is built
on top of Unix. By using the Terminal program or X11 host, you can run
ETEX much like any other Unix variant. The only real issue is that ETEX and
some of the supporting programs like CMake and ImageMagick are not typically
installed (whereas on Linux they often are).

Most applications port fairly easily to Mac OS so long as you are willing
to use them as typical Unix or X11 programs. To make things even easier, I
recommend taking advantage of a Mac porting project to make this process
even easier. MacPorts (http://www.macports.org) and Homebrew (https:
//brew.sh/)) are both good tools for this purpose.

2If you are careful, you can use the cygwin version of make with the windows ports of
CMake, IATEX, and ImageMagick. It is an easy way around the problems described in Sec-

tion @

16

http://www.cygwin.com/
http://www.cygwin.com/
http://www.miktex.org/
http://www.miktex.org/
http://www.miktex.org/
http://www.cmake.org/HTML/Download.html
http://www.cmake.org/HTML/Download.html
http://www.imagemagick.org/script/binary-releases.php#windows
http://www.imagemagick.org/script/binary-releases.php#windows
http://unxutils.sourceforge.net/
http://www.macports.org
http://www.macports.org
https://brew.sh/
https://brew.sh/
https://brew.sh/

6.3 How do I process with XfI¥TEX?

UseLATEX.cmake was not designed with Xgl4TEX in mind, but the interface
of that program is similar enough to KXTEX that you should be able to use it.
Simply change the PDFLATEX_COMPILER CMake variable to the xelatex program
and build the pdf target.

6.4 How do I process with Lual¥TEpX?

UseLATEX.cmake was not designed with Lual#TEX in mind, but the interface
of that program is similar enough to IXTEX that you should be able to use it.
Simply change the PDFLATEX_COMPILER CMake variable to the lualatex program
and build the pdf target.

6.5 Why does UseLATEX.cmake have to copy my tex files?

UseLATEX.cmake cannot process your tex file without copying it. As explained
in Section [3] IMTEX is very picky about file locations. The relative locations of
files that your input files point to, and all but the most simple ETEX files point
to other files, must remain consistent.

UseLATEX.cmake will often have to modify at least one file either through
configurations or image format and size conversions. When creating new files,
UseLATEX.cmake will have to copy either all of the files or none of the files. Since
configuring and writing over an original file is unacceptable, UseLATEX.cmake
forces you to configure it such that TEX builds in a different directory than
where you have placed the original. If you do not specify a seperate directory,
you get an error like the following.

CMake Error at UseLATEX.cmake:377 (MESSAGE):
LaTeX files must be built out of source or you must set
LATEX_OUTPUT_PATH.

The best way around this problem is do an “out of source” build, which is
really the preferred method of using CMake in general. To do an out of source
build, create a new build directory, go to that directory, and run cmake from
there, pointing to the source directory.

If for some reason an out of source build is not feasable or desireable, you can
set the LATEX_QUTPUT_PATH variable to a directory other than . (the local direc-
tory). If you are building a ¥TEX document in the context of a larger project
for which you wish to support in source builds, consider pragmatically setting
the LATEX_OUTPUT_PATH CMake cache variable from within your CMakeLists.txt.

17

6.6 How can ETEX find a file not a tex, image, or bibliog-
raphy?

The most common files included from a KTEX tex file are other tex files, images,
and bibliographies, all of which are handled with options to add_latex_docu-
ment.

But what happens if the ETEX build includes some other type of file? For
example, the fancyvrb package can import a text file with the \VerbatimInput
command to be formatted in a teletype font. Other examples occur, such as
program formatting packages that can read in source code files.

As far as UseLATEX.cmake is concerned, these types of files are simply other
inputs to IATEX and handled in the same way as included tex files. They can be
included by adding them to the INPUTS argument as described in Section [5.1

If an inputted file does not immediately exist but is generated by some other
process, then the file should be generated in the output directory and added to
the DEPENDS of the build as described in Section 5.4l

6.7 Why is convert failing on Windows?

Assuming that you have correctly downloaded and installed an appropriate ver-
sion of ImageMagick (as specified in Section 7 there are several other prob-
lems that users can run into the created build files attempt to run the magick
or convert program.

A common error is that magick or convert not finding a file that is clearly
there.

convert: unable to open image ‘filename’

If you notice that the drive letter is stripped off of the filename (i.e. C:),
then you are probably mixing the Cygwin version of convert with the non-
cygwin CMake. The cygwin version of convert uses the colon (:), as a directory
separator for inputs. Thus, it assumes the output file name is really two input
files separated by the colon. Switch to the non-cygwin port of ImageMagick to
fix this.

If you are using nmake, you may also see the following error:

convert.exe: unable to open image ‘C:’: Permission denied.

I don’t know what causes this error, but it appears to have something to do
with some strange behavior of nmake when quoting the convert executable. The
easiest solution is to use a different build program (such as make or MSVC(C’s
IDE or a unix port of make). If anyone finds away around this problem, please
contribute back.

Another possible error seen is

18

Invalid Parameter - filename

This is probably because CMake has found the wrong convert program. Win-
dows is installed with a program named convert in %SYSTEMROOT %\ system32.
This convert program is used to change the filesystem type on a hard drive. Since
the windows convert is in a system binary directory, it is usually found in the
path before the installed ImageMagick convert program. (Don’t get me started
about the logic behind this.) Make sure that the IMAGEMAGICK_CONVERT CMake
variable is pointing to the correct convert program. Or better yet, make sure you
have ImageMagick 7.0 or higher and use the magick program instead of convert.
Recent versions of UseLATEX.cmake should give a specific warning about this
with instructions on how to fix it.

6.8 How do I automate plot generation with command
line programs?

ETRX is often used in conjunction with plotting programs that run on the
command line like gri or gnuplot. Although there is no direct support for these
programs in UseLATEX.cmake, it is straightforward to use these programs.

One way to use a plotting program is simply to run it yourself to generate the
plot and then incorporate the image file into your I TEX document as you would
any other image file (see Section . This the easiest way to incorporate these
plots since it does not require additional CMake code. It also ensures consistency
of how the plot looks (often the plots will look different if created on different
platforms), and it provides the opportunity to edit the image to make it look
better for publication.

Another way to use these plotting programs is to automatically run them
when building the IXTEX document. This is convenient if you frequently change
the data you are plotting or if you are creating many plots. To automate running
the plotting program build one or more targets to generate these files and then
add these targets as I¥TEX dependencies (see Section for information on
adding dependencies). Here is an example of creating the targets for converting
a directory of gri files and incorporating the resulting files in a I/ TEX document.

Set GRI executable

set (GRI_COMPILE "/usr/bin/gri")

Set the location of data files

set (DATA_DIR data)

Set the location of the directory for image files
set (IMAGE_DIR graphics)

Get a list of gri files
file(GLOB_RECURSE GRI_FILES "*.gri")

19

foreach(file ${GRI_FILES})

get_filename_component (basename "${file}" NAME_WE)

Replace stings in gri file so data files can be found

file (READ
${CMAKE_CURRENT_SOURCE_DIR}/${IMAGE_DIR}/${basename}.gri
file_contents
)

string (REPLACE "${DATA_DIR}" "${IMAGE_DIR}/${DATA_DIR}"
changed_file_contents ${file_contents}
)

file (WRITE
${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.gri
${changed_file_contents}
)

Command to run gri
if (GRI_COMPILE)
add_custom_command (
QUTPUT
${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.eps
DEPENDS
${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.gri
${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${DATA_DIR}
COMMAND
${GRI_COMPILE}
ARGS
-output
${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.eps
${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.gri
)
endif ()
Make a list of all gri files (for ADD_LATEX_DOCUMENT depend)
set (ALL_GRI_FILES ${ALL_GRI_FILES}
${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.eps
)
endforeach(file)

Copy over all data files needed to generate gri graphs
add_custom_command (
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${DATA_DIR}
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${IMAGE_DIR}/${DATA_DIR}
COMMAND ${CMAKE_COMMAND} -E copy_directory
${CMAKE_CURRENT_SOURCE_DIR}/${IMAGE_DIR}/${DATA_DIR}
${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${DATA_DIR}

20

add_latex_document (MyDoc.tex
IMAGE_DIRS ${IMAGE_DIR}
DEPENDS ${ALL_GRI_FILES}
)

6.9 Why does make stop after each image conversion?

There is a bug in the ImageMagick convert version 6.1.8 that inappropriatly
returns a failure condition even when the image convert was successful. The
problem might also occur in other ImageMagick versions. Try updating your
installation of ImageMagick.

6.10 How do I resolve \write 18 errors with pstricks or
pdftricks?

A \writel18 command is I/ TEX’s obtuse syntax for running a command on your
system. Commands in the pstricks and pdftricks packages may need to run
commands on your system to, for example, convert graphics from one format to
another.

Unfortunately, allowing I#TEX to run commands on your system is a security
issue. Consequently, most versions of IXTEX disable this feature by default.
Thus, to use packages that rely on \writel8, you may have to enable the feature
via a command line option that allows the .tex document to execute arbitrary
commands on your computer. This is typically done by adding a command line
option, which is usually either —-enable-writel8 or -shell-escape.

Section describes how to pass custom flags to M TEX. One way to do this
is by adding --enable-writel18 (or -shell-escape) to the LATEX_COMPILER -
FLAGS CMake variable during configuration. This is easy to do and allows you
to customize the argument based on what IWTEX distribution you are using.
However, it also means you have to make this change every time you configure
the project, and will be confusing to new users.

An alternate way to do this is by adding --enable-writel18 (or -shell-
escape) to the COMPILER FLAGS target property for the *_dvi and/or *_pdf
target.

add_latex_document (HelloWorld.tex)

set_target_properties(HelloWorld_dvi HelloWorld_pdf
PROPERTIES COMPILER_FLAGS "--enable-writel8"
)

The disadvantage of this latter approach is the reduction of portability. This
addition could cause a failure for any KTEX implementation that does not sup-
port the ——enable-writel18 flag (for which there are many). It is also allowing

21

ETREX to execute arbitrary commands on your system, so you might be intro-
ducing security vulnerabilities to anyone compiling your repo.

See Section for more details on adding custom command line argument
flags to the IXTEX build.

6.11 Why is UseLATEX.cmake complaining about image
file names?

If you have an image file with a filename that contains multiple periods, for
example my.image.pdf, UseLATEX.cmake will issue a warning like the following.

Some LaTeX distributions have problems with image file names
with multiple extensions or spaces. Consider changing
my.image.pdf to something like my-image.pdf.

This is because, just as the warning reports, some versions of IXTEX have
problems with including image filenames with multiple extensions. For example,
if you tried to include my.image.pdf with a command like

\includegraphics{my.image}

then some versions of BTEX will respond that the image extension .image is not
recognized or that the file my.image is not found because it fails to look for files
with valid extensions.

Although it is inadvisable (per Section, you might try to get around the
problem by specifying the extension like this.

\includegraphics{my.image.pdf}

This might work, or it might just make IXTEX complain that it does not recognize
images with extension .image.pdf.

In the end, the best solution is to simply use filenames that will not trouble
BTEX. Even though some KTEX distributions (like MacTEX) seem to handle
this extension ambiguity correctly, others clearly do not. Thus, even if your
KTEX distribution handles these image filenames correctly, it is still a bad idea
in case you need to change distributions or build on other computers. Your best
course of action is to simply heed the warning and rename your files.

6.12 Why are there no FORCE PS or FORCE_SAFEPDF options?

Because you should just use the FORCE_DVI option instead.

Both the ps and safepdf targets are built by first creating a .dvi file using
the standard latex program. The .dvi file is then converted to .ps and subse-
quently to a .pdf file. Thus, you can just enable the FORCE_DVI option to force
UseLATEX.cmake on this build path.

22

The force options are really disabling compile paths that do not work for
your document. For example, pdflatex does not support all postscript packages,
so that program can fail for some documents. The FORCE_DVI ensures that the
document can only be built in ways that support the postscript features.

6.13 Why is my image file not being automatically con-
verted?

UseLATEX.cmake has the ability to find image files and automatically convert
them to a format I¥TEX understands. Usually this conversion happens with the
ImageMagick magick program.

Users occasionally report that image formats that should be supported be-
cause ImageMagick can convert them are ignored by UseLATEX.cmake. This can
happen even when the IMAGE DIRS option points to the directory containing the
image files.

The problem here is that UseLATEX.cmake only considers files in IMAGE_-
DIRS directories that it identifies as a bona fide image. This prevents UselLA-
TEX.cmake from picking up another type of file, such as a README text file,
and erroneously trying to do image conversion on it.

UseLATEX.cmake checks for image files by looking for a known set of image
extensions. This extension list is maintained separately from ImageMagick’s
extension list and is generally a small subset of all the potential formats Im-
ageMagick supports. Consequently, it is possible for UseLATEX.cmake to ignore
an image file that could be converted.

You can work around this problem by specifying images independently with
the IMAGES option. UseLATEX.cmake will assume any image specified under
the IMAGES option is in fact an image that can be converted with ImageMagick
regardless of the extension. See Section for more details.

If there is a file extension that you think should be added to the list of image
extensions to check, send a note to the UseLATEX.cmake maintainers.

6.14 Why are some files in IMAGE DIRS not processed?

If WTRX is telling you it cannot find an image file in an IMAGE_DIRS directory
that you are sure should be picked up (i.e. does not have problems like
you may just need to run cmake again.

This problem often occurs when a file is added to an IMAGE_DIRS directory.
IMAGE_DIRS works by globbing files in those directories at the time that CMake
is directly run. If you add a file to the directory, that file will not yet be part
of the make files that CMake built, and there will be no known dependencies to
try to find them. Simply running cmake again will re-perform the glob and fix
the problem.

As of UseLATEX.cmake version 2.7.2 and CMake version 3.12; a target is
added to the build to check whether the list of files in any of the IMAGE_DIRS
have changed. Thus, this problem is much less likely to happen now, but it still
can occur.

23

6.15 Why is the MANGLE TARGET NAMES option deprecated?

The original concept for UseLATEX.cmake was part of a build system for a single
document. As such, add_latex_document created generically named targets
(like dvi and pdf). This became problematic when UseLATEX.cmake was used
in larger projects that built multiple targets. The multiple documents would
each try to create their own dvi, pdf, etc. targets, and this would create CMake
errors when they conflicted with each other.

To solve this problem, in 2006 the MANGLE_TARGET_NAMES was added to add_-
latex_document. When this option was given, add_latex_document would cre-
ate “mangled” targets that are unique to the name of the document so that
they would not conflict with each other.

This option solved the problem for projects building multiple documents,
but a couple of undesirable elements were later discovered. The first was that
ETEX documents built with the MANGLE_TARGET_NAMES option were never built
by default. To build the document, the user had to specifically request the
target, which had an unwieldy name, to be built or to explicitly set up depen-
dencies to those targets. The second and more serious issue was that if a project
incorporated one or more sub-projects (not uncommon) and more than one of
these projects used UseLATEX.cmake, you were likely to get conflicting targets
again.

Consequently, in 2015 a change was made to add_latex_document to man-
gle all targets. The UseLATEX.cmake package establishes a single set of default
target names (dvi, pdf, etc.), and add_latex_document sets up dependencies
from these default targets to the mangled target names. Thus, when UselA-
TEX.cmake is used for a single document, the same simple targets work fine.
When multiple documents are added, the default targets are automatically set
up for all documents without conflicts. See Section for more details on
building multiple TEX documents in a project.

So, MANGLE_TARGET_NAMES is deprecated because it is redundant. All tar-
gets are mangled. The only difference is that add_latex_document establishes
dependencies to the default target names. If these dependency targets are not
desired, use the EXCLUDE_FROM_DEFAULTS option. (Once again, see Section
for more details.)

6.16 What is the point of the default ETEX arguments?

The BTEX commands (e.g. latex and pdflatex) were originally designed to be
run interactively. The tex file is fed to the interpreter and verbose responses are
generated. When an error is encountered, IXTEX stops and provides a prompt
to type commands to resolve the problem. This interactive mode of building a
ITEX file is problematic when attempting to automate it in a batch or build sys-
tem. Thus, the LATEX_COMPILER_FLAGS and PDFLATEX_COMPILER_FLAGS, which
contain the command line flags passed to the ITEX program, are initialized to
modify the behavior to work better in a build system.

The first flag added is -interaction=batchmode. This flag does two ma-

24

jor things. The first thing this flag does is hide most of the ITEX output. A
typical M TEX build contains extremely verbose status messages that provide all
sorts of useless information. Any important information (like a syntax error)
is easily lost. Instead, you have to consult the .log file to see the full output.
Because important warnings can be hidden along with the unimportant, Use-
LATEX.cmake performs several greps of the log file after the build to look for
the most important warnings encountered with IATEX.

The second thing the -interaction=batchmode flag does is to change the
behavior of IXTEX when an error occurs. Rather than enter an interactive
prompt, the BTEX program simply quits. This is how pretty much every build
system expects a compiler to behave.

The second flag added is -file-line-error. For some odd reason the
default behavior of ITEX is to simply print out a message and leave it you to
trace the location of the error. Instead, this flag instructs I“TEX to prepend the
filename and line number to every error to simplify finding the error.

6.17 Why do the ps2pdf arguments have the # character
in them?

When calling the ps2pdf program, it is typical to use several arguments that
are passed to the underlying ghostscript system. These arguments often take
the form of an option followed by an equal (=) character and then the value
for that option. For example, arguments like -dCompatibilityLevel=1.3,
-dEmbedAllFonts=true, and -dColorImageFilter=/FlateEncode are com-
mon. This is a standard convention for command line arguments in systems
using Unix-like shells.

In truth, the ps2pdf program and its variants are actually shell scripts that
provide a simplified interface for calling the gs ghostscript program. On Unix-
like systems they are naturally enough implemented as shell scripts. How-
ever, the standard Windows port instead uses bat scripts, which are native
to that system. Unfortunately, the interpreter for bat scripts treats the = char-
acter as special. Ultimately it will split the arguments on the = character,
and that will lead to strange errors from ps2pdf. For example, on Windows
the -dCompatibilityLevel=1.3 argument will be split into the arguments
-dCompatibilityLevel and 1.3. ps2pdf will think 1.3 is referring to the input
file name and give an obtuse error about the file not being found.

The workaround is that gs (and therefore all its derived scripts like ps2pdf)
support using the # character in lieu of =. Thus, on Windows machines, Use-
LATEX.cmake defaults to an alternate set of arguments for ps2pdf that use # in
them.

An issue you might encounter is that the # character is also frequently treated
as special by script and build interpreter. It is most often used to define a
comment. For this reason the # variant is only used on Windows where it is
most likely to be needed. The build systems I have tried seem pretty resilient to
using # in commands. If you have issues running ps2pdf with either character,

25

you can attempt to resolve the problem by switching back and forth. If you do
notice a problem, please let us know so that we can fix it for other users.

7 Acknowledgments
Thanks to all of the following contributors.

Matthias Bach Instructions for using Lual&TEX.

Martin Baute Check for Windows version of convert being used instead of
ImageMagick’s version.

Izaak Beekman Help in fixing the order of arguments for LATEX_SMALL_IM-
AGES with Imagemagick 7.0.

Arnout Boelens Example of using gri in conjunction with ETEX.

Mark de Wever Fixes for interactions between the makeglossaries and
BIBTEX commands.

Eric Dénges Support for include directories.

Alin Elena Suggestions on removing dependence on makeglossaries command.
Myles English Support for the nomencl package.

Tomasz Grzegurzko Support for htlatex.

QDystein S. Haaland Support for making glossaries.

Sven Klomp Help with SyncTeX support.

Nikos Koukis Suggestions for default latex options.

Thimo Langbehn Support for pstricks with the —-enable-writel18 option.
Antonio LaTorre Support for the multibib package.

Edwin van Leeuwen Fix for a bug when copying BIBTEX files.

Dan Lipsa Support for the multind package.

Lukasz Lis Workaround for problem with ImageMagick dropping the Bound-
ingBox of eps files by using the ps2pdf program instead.

Eric Noulard Support for any file extension on KTEX input files.

Theodore Papadopoulo DEPENDS parameter for add_latex_document and
help in identifying some dependency issues.

Jorge Gerardo Pena Pastor Support for SVG files.

26

Julien Schueller Check for existence of Imagemagick convert only when used.

David Tracey Support for using biber command with the USE_BIBLATEX op-
tion.

Raymod Wan DEFAULT_SAFEPDF option.

This work was primarily done at Sandia National Laboratories. Sandia is
a multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94A1L85000.

This document is released as technical report SAND 2008-2743P.

A Sample CMakeLists.txt

Following is a sample listing of CMakeLists.txt. In fact, it is the CMakeLists.txt
that is used to build this document.

cmake_minimum_required (VERSION 3.5)
project (UseLATEX_DOC NONE)
include (UseLATEX. cmake)

Note that normally CMakelLists.txt would not be considered an
input to the document, but in this special case of documenting
UseLATEX.cmake the contents of this file is actually included
in the document.
add_latex_document (UseLATEX.tex

INPUTS CMakeLists.txt

)

27

	Description
	Download
	Basic Usage
	Using a Bibliography
	Incoporating Images
	Selecting a Default Build
	Force a Type of Build
	Create Nothing by Default
	SyncTeX-Enabled Editors

	Package Support
	Making an Index
	Making Multiple Indexes
	Making a Glossary
	Nomenclature Support
	multibib Support
	biblatex Support

	Advanced Configurations
	Multipart LaTeX Files
	Configuring LaTeX Files
	Building Multiple LaTeX Documents
	Identifying Dependent Files
	Adding Include Directories
	Specifying Command Line Arguments

	Frequently Asked Questions
	How do I process LaTeX files on Windows?
	How do I process LaTeX files on Mac OS X?
	How do I process with XeLaTeX?
	How do I process with LuaLaTeX?
	Why does UseLATEX.cmake have to copy my tex files?
	How can LaTeX find a file not a tex, image, or bibliography?
	Why is convert failing on Windows?
	How do I automate plot generation with command line programs?
	Why does make stop after each image conversion?
	How do I resolve \write 18 errors with pstricks or pdftricks?
	Why is UseLATEX.cmake complaining about image file names?
	Why are there no FORCE_PS or FORCE_SAFEPDF options?
	Why is my image file not being automatically converted?
	Why are some files in IMAGE_DIRS not processed?
	Why is the MANGLE_TARGET_NAMES option deprecated?
	What is the point of the default LaTeX arguments?
	Why do the ps2pdf arguments have the # character in them?

	Acknowledgments
	Sample CMakeLists.txt

