diff --git a/Common/Core/vtkAbstractArray.h b/Common/Core/vtkAbstractArray.h index df6a537fd614335f8014337121929be012a7b5e2..e7846e403cf6ea4ee5d794207da8527b530c9464 100644 --- a/Common/Core/vtkAbstractArray.h +++ b/Common/Core/vtkAbstractArray.h @@ -384,7 +384,7 @@ public: // prominence P, we sample N values, with N = f(T; P, U). // We want f to be sublinear in T in order to interactively handle large // arrays; in practice, we can make f independent of T: - // \f$ N >= \frac{5}{P}\mathrm{ln}\left(\frac{1}{PU}) \f$, + // \f$ N >= \frac{5}{P}\mathrm{ln}\left(\frac{1}{PU}\right) \f$, // but note that small values of P are costly to achieve. // The default parameters will locate prominent values that occur at least // 1 out of every 1000 samples with a confidence of 0.999999 (= 1 - 1e6). diff --git a/Common/Core/vtkMath.h b/Common/Core/vtkMath.h index 5ea14d43c025008125054a6b690514c81aae62cd..739ece0dd0999c939eebb8d14ef016f7113c468f 100644 --- a/Common/Core/vtkMath.h +++ b/Common/Core/vtkMath.h @@ -661,14 +661,14 @@ public: // The output is provided by overwriting the input A with a matrix of the same size as // A containing all of the information about L and U. If the output matrix is // \f$ A* = \left( \begin{array}{cc} - // a & b \\ % + // a & b \\ // c & d \end{array} \right)\f$ // then L and U can be obtained as: // \f$ L = \left( \begin{array}{cc} - // 1 & 0 \\ % + // 1 & 0 \\ // c & 1 \end{array} \right)\f$ // \f$ U = \left( \begin{array}{cc} - // a & b \\ % + // a & b \\ // 0 & d \end{array} \right)\f$ // // That is, the diagonal of the resulting A* is the diagonal of U. The upper right