XdmfTopologyConverter.cpp 29.7 KB
Newer Older
Kenneth Leiter's avatar
Kenneth Leiter committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*****************************************************************************/
/*                                    XDMF                                   */
/*                       eXtensible Data Model and Format                    */
/*                                                                           */
/*  Id : XdmfTopologyConverter.cpp                                           */
/*                                                                           */
/*  Author:                                                                  */
/*     Kenneth Leiter                                                        */
/*     kenneth.leiter@arl.army.mil                                           */
/*     US Army Research Laboratory                                           */
/*     Aberdeen Proving Ground, MD                                           */
/*                                                                           */
/*     Copyright @ 2011 US Army Research Laboratory                          */
/*     All Rights Reserved                                                   */
/*     See Copyright.txt for details                                         */
/*                                                                           */
/*     This software is distributed WITHOUT ANY WARRANTY; without            */
/*     even the implied warranty of MERCHANTABILITY or FITNESS               */
/*     FOR A PARTICULAR PURPOSE.  See the above copyright notice             */
/*     for more information.                                                 */
/*                                                                           */
/*****************************************************************************/

24
#include <cmath>
25
26
27
#include "XdmfAttribute.hpp"
#include "XdmfAttributeCenter.hpp"
#include "XdmfAttributeType.hpp"
28
29
#include "XdmfGeometry.hpp"
#include "XdmfGeometryType.hpp"
30
#include "XdmfHeavyDataWriter.hpp"
31
32
#include "XdmfSet.hpp"
#include "XdmfSetType.hpp"
33
34
#include "XdmfTopology.hpp"
#include "XdmfTopologyConverter.hpp"
35
#include "XdmfTopologyType.hpp"
36
#include "XdmfUnstructuredGrid.hpp"
37
#include "XdmfError.hpp"
38

39
40
41
42
43
//
// local methods
//
namespace {

44
45
46
47
  // Classes that perform topology conversions. Converter is the root
  // base class.  Tessellator is a subclass of Converter that deals
  // with cases where the mesh only needs to be tessellated to carry
  // out the conversion (e.g. Hexahedron_64 to Hexahedron).
48
49
50
51
52
53
54
55
56
57
58
59
60

  class Converter {

  public:

    Converter()
    {
    }

    virtual ~Converter()
    {
    }

61
62
    virtual shared_ptr<XdmfUnstructuredGrid>
    convert(const shared_ptr<XdmfUnstructuredGrid> gridToConvert,
63
            const shared_ptr<const XdmfTopologyType> topologyType,
64
            const shared_ptr<XdmfHeavyDataWriter> heavyDataWriter) const = 0;
65
66
67
68

  protected:

    struct PointComparison {
69

70
      static double epsilon() { return 1e-6; };
71

72
73
74
75
76
      bool
      operator()(const std::vector<double> & point1,
                 const std::vector<double> & point2) const
      {
        for(unsigned int i=0; i<3; ++i) {
77
          if(fabs(point1[i] - point2[i]) > epsilon()) {
78
79
80
81
82
83
84
            return point1[i] < point2[i];
          }
        }
        return false;
      }
    };

85
    unsigned int
86
    insertPointWithoutCheck(const std::vector<double> & newPoint,
87
88
                            const shared_ptr<XdmfTopology> & newConnectivity,
                            const shared_ptr<XdmfGeometry> & newPoints) const
89
    {
90
91
      const unsigned int index = newPoints->getSize() / 3;
      newConnectivity->pushBack(index);
92
93
94
      newPoints->pushBack(newPoint[0]);
      newPoints->pushBack(newPoint[1]);
      newPoints->pushBack(newPoint[2]);
95
      return index;
96
97
    }

98
    unsigned int
99
100
    insertPointWithCheck(const std::vector<double> & newPoint,
                         std::map<std::vector<double>, unsigned int, PointComparison> & coordToIdMap,
101
102
                         const shared_ptr<XdmfTopology> & newConnectivity,
                         const shared_ptr<XdmfGeometry> & newPoints) const
103
    {
104
      std::map<std::vector<double>, unsigned int, PointComparison>::const_iterator iter =
105
106
107
108
        coordToIdMap.find(newPoint);
      if(iter == coordToIdMap.end()) {
        // Not inserted before
        coordToIdMap[newPoint] = newPoints->getSize() / 3;;
109
        return insertPointWithoutCheck(newPoint, newConnectivity, newPoints);
110
111
      }
      else {
112
113
114
        const unsigned int index = iter->second;
        newConnectivity->pushBack(index);
        return index;
115
116
117
118
119
120
121
122
123
124
125
126
127
      }
    }

  };

  class Tessellator : public Converter {

  public:

    virtual ~Tessellator()
    {
    }

128
129
    shared_ptr<XdmfUnstructuredGrid>
    convert(const shared_ptr<XdmfUnstructuredGrid> gridToConvert,
130
            const shared_ptr<const XdmfTopologyType> topologyType,
131
            const shared_ptr<XdmfHeavyDataWriter> heavyDataWriter) const
132
    {
133
      shared_ptr<XdmfUnstructuredGrid> toReturn =
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        XdmfUnstructuredGrid::New();
      toReturn->setName(gridToConvert->getName());
      toReturn->setGeometry(gridToConvert->getGeometry());

      if(heavyDataWriter) {
        if(!toReturn->getGeometry()->isInitialized()) {
          toReturn->getGeometry()->read();
        }
        toReturn->getGeometry()->accept(heavyDataWriter);
        toReturn->getGeometry()->release();
      }

      bool releaseTopology;
      if(!gridToConvert->getTopology()->isInitialized()) {
        gridToConvert->getTopology()->read();
        releaseTopology = true;
      }

      this->tesselateTopology(gridToConvert->getTopology(),
                              toReturn->getTopology());

      if(releaseTopology) {
        gridToConvert->getTopology()->release();
      }

      if(heavyDataWriter) {
        toReturn->getTopology()->accept(heavyDataWriter);
        toReturn->getTopology()->release();
      }

      for(unsigned int i=0; i<gridToConvert->getNumberAttributes(); ++i) {
165
        shared_ptr<XdmfAttribute> currAttribute =
166
          gridToConvert->getAttribute(i);
167
168
169
170
171
172
173
174
175
176
        shared_ptr<XdmfAttribute> createdAttribute =
          shared_ptr<XdmfAttribute>();
        if(currAttribute->getCenter() == XdmfAttributeCenter::Node()) {
          createdAttribute = currAttribute;
        }
        else if(currAttribute->getCenter() == XdmfAttributeCenter::Cell()) {
          bool releaseAttribute = false;
          if(!currAttribute->isInitialized()) {
            currAttribute->read();
            releaseAttribute = true;
177
178
          }

179
180
181
182
183
184
185
186
187
188
189
190
191
192
          createdAttribute = XdmfAttribute::New();
          createdAttribute->setName(currAttribute->getName());
          createdAttribute->setType(currAttribute->getType());
          createdAttribute->setCenter(currAttribute->getCenter());
          createdAttribute->initialize(currAttribute->getArrayType(),
                                       currAttribute->getSize() * mNumTesselations);
          for(unsigned int j=0; j<currAttribute->getSize(); ++j) {
            createdAttribute->insert(j * mNumTesselations,
                                     currAttribute,
                                     j,
                                     mNumTesselations,
                                     1,
                                     0);
          }
193

194
195
          if(releaseAttribute) {
            currAttribute->release();
196
          }
197
198
199
200
201
202
        }
        if(createdAttribute) {
          toReturn->insert(createdAttribute);
          if(heavyDataWriter) {
            if(!createdAttribute->isInitialized()) {
              createdAttribute->read();
203
            }
204
205
            createdAttribute->accept(heavyDataWriter);
            createdAttribute->release();
206
          }
207
        }
208
209
210
211
212
      }
      return toReturn;
    }

    virtual void
213
214
    tesselateTopology(shared_ptr<XdmfTopology> topologyToConvert,
                      shared_ptr<XdmfTopology> topologyToReturn) const = 0;
215
216
217
218
219
220
221
222
223
224
225
226

  protected:

    Tessellator(const unsigned int numTesselations) :
      mNumTesselations(numTesselations)
    {
    }

    const unsigned int mNumTesselations;

  };

227
228
  template <unsigned int ORDER, bool ISSPECTRAL>
  class HexahedronToHighOrderHexahedron : public Converter {
229
230
231

  public:

232
    HexahedronToHighOrderHexahedron()
233
234
235
    {
    }

236
    virtual ~HexahedronToHighOrderHexahedron()
237
238
239
    {
    }

240
241
242
243
244
245
    void
    calculateIntermediatePoint(std::vector<double> & result,
                               const std::vector<double> & point1,
                               const std::vector<double> & point2,
                               int index,
                               bool spectral) const
246
    {
247
248
249
      const double scalar = points[index];
      for (int i=0; i<3; i++)
        result[i] = point1[i]+scalar*(point2[i]-point1[i]);
250
251
252
    }


253
254
    shared_ptr<XdmfUnstructuredGrid>
    convert(const shared_ptr<XdmfUnstructuredGrid> gridToConvert,
255
            const shared_ptr<const XdmfTopologyType> topologyType,
256
            const shared_ptr<XdmfHeavyDataWriter> heavyDataWriter) const
257
    {
258
259

      shared_ptr<XdmfUnstructuredGrid> toReturn = XdmfUnstructuredGrid::New();
260
261
      toReturn->setName(gridToConvert->getName());

262
263
264
265
266
      shared_ptr<XdmfGeometry> geometry = gridToConvert->getGeometry();
      shared_ptr<XdmfGeometry> toReturnGeometry = toReturn->getGeometry();

      toReturnGeometry->setType(geometry->getType());
      toReturnGeometry->initialize(geometry->getArrayType());
267
268

      bool releaseGeometry = false;
269
270
      if(!geometry->isInitialized()) {
        geometry->read();
271
272
273
        releaseGeometry = true;
      }

274
275
      shared_ptr<XdmfTopology> topology = gridToConvert->getTopology();
      shared_ptr<XdmfTopology> toReturnTopology = toReturn->getTopology();
276

277
278
279
280
      toReturn->getTopology()->setType(topologyType);
      toReturnTopology->initialize(topology->getArrayType());
      toReturnTopology->reserve(mNodesPerElement *
                                topology->getNumberElements());
281
282

      bool releaseTopology = false;
283
284
285
      if(!topology->isInitialized()) {
        topology->read();
        releaseTopology = true;
286
287
288
      }

      std::map<std::vector<double>, unsigned int, PointComparison> coordToIdMap;
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
      std::map<unsigned int, unsigned int> oldIdToNewId;

      // allocate storage for values used in loop
      unsigned int zeroIndex;
      unsigned int oneIndex;
      unsigned int twoIndex;
      unsigned int threeIndex;
      unsigned int fourIndex;
      unsigned int fiveIndex;
      unsigned int sixIndex;
      unsigned int sevenIndex;
      std::vector<double> elementCorner0(3);
      std::vector<double> elementCorner1(3);
      std::vector<double> elementCorner2(3);
      std::vector<double> elementCorner3(3);
      std::vector<double> elementCorner4(3);
      std::vector<double> elementCorner5(3);
      std::vector<double> elementCorner6(3);
      std::vector<double> elementCorner7(3);
      std::vector<double> planeCorner0(3);
      std::vector<double> planeCorner1(3);
      std::vector<double> planeCorner2(3);
      std::vector<double> planeCorner3(3);
      std::vector<double> lineEndPoint0(3);
      std::vector<double> lineEndPoint1(3);
      std::vector<double> point(3);

      unsigned int offset = 0;
      for(unsigned int elem = 0; elem<topology->getNumberElements(); ++elem) {

        //
        // get indices of coner vertices of the element
        //
        zeroIndex = topology->getValue<unsigned int>(offset++);
        oneIndex = topology->getValue<unsigned int>(offset++);
        twoIndex = topology->getValue<unsigned int>(offset++);
        threeIndex = topology->getValue<unsigned int>(offset++);
        fourIndex = topology->getValue<unsigned int>(offset++);
        fiveIndex = topology->getValue<unsigned int>(offset++);
        sixIndex = topology->getValue<unsigned int>(offset++);
        sevenIndex = topology->getValue<unsigned int>(offset++);

        // get locations of corner vertices of the element
        geometry->getValues(zeroIndex * 3,
                            &(elementCorner0[0]),
                            3);
        geometry->getValues(oneIndex * 3,
                            &(elementCorner1[0]),
                            3);
        geometry->getValues(twoIndex * 3,
                            &(elementCorner2[0]),
                            3);
        geometry->getValues(threeIndex * 3,
                            &(elementCorner3[0]),
                            3);
        geometry->getValues(fourIndex * 3,
                            &(elementCorner4[0]),
                            3);
        geometry->getValues(fiveIndex * 3,
                            &(elementCorner5[0]),
                            3);
        geometry->getValues(sixIndex * 3,
                            &(elementCorner6[0]),
                            3);
        geometry->getValues(sevenIndex * 3,
                            &(elementCorner7[0]),
                            3);

        // loop over i, j, k directions of element isolation i, j, and
        // k planes
        for(unsigned int i=0; i<mNodesPerEdge; ++i){
          // calculate corners of i plane
          calculateIntermediatePoint(planeCorner0,
                                     elementCorner0,
                                     elementCorner1,
                                     i,
                                     true);
          calculateIntermediatePoint(planeCorner1,
                                     elementCorner4,
                                     elementCorner5,
                                     i,
                                     true);
          calculateIntermediatePoint(planeCorner2,
                                     elementCorner3,
                                     elementCorner2,
                                     i,
                                     true);
          calculateIntermediatePoint(planeCorner3,
                                     elementCorner7,
                                     elementCorner6,
                                     i,
                                     true);

          for(unsigned int j=0; j<mNodesPerEdge; ++j) {
            // calculate endpoints of j slice of i plane
            calculateIntermediatePoint(lineEndPoint0,
                                       planeCorner0,
                                       planeCorner2,
                                       j,
                                       true);
            calculateIntermediatePoint(lineEndPoint1,
                                       planeCorner1,
                                       planeCorner3,
                                       j,
                                       true);

            for(unsigned int k=0; k<mNodesPerEdge; ++k) {
              // calculate point to add to mesh
              calculateIntermediatePoint(point,
                                         lineEndPoint0,
                                         lineEndPoint1,
                                         k,
                                         true);
              if((i == 0 || i == ORDER) ||
                 (j == 0 || j == ORDER) ||
                 (k == 0 || k == ORDER)) {
                unsigned int newIndex = 
                  this->insertPointWithCheck(point,
                                             coordToIdMap,
                                             toReturnTopology,
                                             toReturnGeometry);
                if((i == 0 || i == ORDER) &&
                   (j == 0 || j == ORDER) &&
                   (k == 0 || k == ORDER)) {
                  if(i == 0) {
                    if(j == 0) {
                      if(k == 0) {
                        oldIdToNewId[zeroIndex] = newIndex;
                      }
                      else {
                        oldIdToNewId[fourIndex] = newIndex;
                      }
                    }
                    else if(k == 0) {
                      oldIdToNewId[threeIndex] = newIndex;
                    }
                    else {
                      oldIdToNewId[sevenIndex] = newIndex;
                    }
                  }
                  else {
                    if(j == 0) {
                      if(k == 0) {
                        oldIdToNewId[oneIndex] = newIndex;
                      }
                      else {
                        oldIdToNewId[fiveIndex] = newIndex;
                      }
                    }
                    else if(k == 0) {
                      oldIdToNewId[twoIndex] = newIndex;
                    }
                    else {
                      oldIdToNewId[sixIndex] = newIndex;
                    }
                  }
                }
              }
              else {
                this->insertPointWithoutCheck(point,
                                              toReturnTopology,
                                              toReturnGeometry);
              }
            }
          }
454
455
        }
      }
456

457
      if(releaseTopology) {
458
459
460
461
        topology->release();
      }
      if(releaseGeometry) {
        geometry->release();
462
      }
463

464
465
466
467
468
469
470
      if(heavyDataWriter) {
        toReturnTopology->accept(heavyDataWriter);
        toReturnTopology->release();
        toReturnGeometry->accept(heavyDataWriter);
        toReturnGeometry->release();
      }

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
      // handle sets
      for(unsigned int i=0; i<gridToConvert->getNumberSets(); ++i) {
        const shared_ptr<XdmfSet> set = gridToConvert->getSet(i);
        const shared_ptr<const XdmfSetType> setType = set->getType();
        if(setType == XdmfSetType::Cell()) {
          toReturn->insert(set);
        }
        else if(setType == XdmfSetType::Node()) {
          bool releaseSet = false;
          if(!set->isInitialized()) {
            set->read();
            releaseSet = true;
          }
          shared_ptr<XdmfSet> toReturnSet = XdmfSet::New();
          toReturnSet->setName(set->getName());
          toReturnSet->setType(set->getType());
          toReturnSet->initialize(set->getArrayType(),
                                  set->getSize());
                                  
          for(int i=0; i<set->getSize(); ++i) {
            const unsigned int nodeId = set->getValue<unsigned int>(i);
            std::map<unsigned int, unsigned int>::const_iterator iter =
              oldIdToNewId.find(nodeId);
            if(iter == oldIdToNewId.end()) {
              XdmfError::message(XdmfError::FATAL, 
                                 "Error converting hex node id set to high "
                                 "order node id set.");
            }
            toReturnSet->insert(i, iter->second);
          }
          if(releaseSet) {
            set->release();
          }
504

505
          toReturn->insert(toReturnSet);
506

507
508
509
510
511
512
513
          if(heavyDataWriter) {
            toReturnSet->accept(heavyDataWriter);
            toReturnSet->release();
          }
        }
      }
      return toReturn;
514
515
516
    }

  private:
517
518
519
520
    static const unsigned int mNodesPerEdge = ORDER + 1;
    static const unsigned int mNodesPerElement = mNodesPerEdge *
      mNodesPerEdge * mNodesPerEdge;
    static const double points[];
521
522
523

  };

524
525
526
527
528
529
530
  template <>
  const double HexahedronToHighOrderHexahedron<3, true>::points[] = {
    0.0,
    0.5-0.1*sqrt(5.0),
    0.5+0.1*sqrt(5.0),
    1.0
  };
531

532
533
534
535
536
537
538
539
  template <>
  const double HexahedronToHighOrderHexahedron<4, true>::points[] = {
    0.0,
    0.5-sqrt(21.0)/14.0,
    0.5,
    0.5+sqrt(21.0)/14.0,
    1.0
  };
540

541
542
543
544
545
546
547
548
549
  template <>
  const double HexahedronToHighOrderHexahedron<5, true>::points[] = {
    0.0,
    0.5-sqrt((7.0+2.0*sqrt(7.0))/84.0),
    0.5-sqrt((7.0-2.0*sqrt(7.0))/84.0),
    0.5+sqrt((7.0-2.0*sqrt(7.0))/84.0),
    0.5+sqrt((7.0+2.0*sqrt(7.0))/84.0),
    1.0
  };
550

551
552
553
554
555
556
557
558
559
560
  template <>
  const double HexahedronToHighOrderHexahedron<6, true>::points[] = {
    0.0,
    0.5-sqrt((15.0+2.0*sqrt(15.0))/132.0),
    0.5-sqrt((15.0-2.0*sqrt(15.0))/132.0),
    0.5,
    0.5+sqrt((15.0-2.0*sqrt(15.0))/132.0),
    0.5+sqrt((15.0+2.0*sqrt(15.0))/132.0),
    1.0
  };
561

562
563
564
565
566
567
568
569
570
571
572
  template <>
  const double HexahedronToHighOrderHexahedron<7, true>::points[] = {
    0.0,
    0.064129925745196714,
    0.20414990928342885,
    0.39535039104876057,
    0.60464960895123943,
    0.79585009071657109,
    0.93587007425480329,
    1.0
  };
573

574
575
576
577
578
579
580
581
582
583
584
585
  template <>
  const double HexahedronToHighOrderHexahedron<8, true>::points[] = {
    0.0,
    0.050121002294269912,
    0.16140686024463108,
    0.31844126808691087,
    0.5,
    0.68155873191308913,
    0.83859313975536898,
    0.94987899770573003,
    1.0
  };
586

587
588
589
590
591
592
593
594
595
596
597
598
  template <>
  const double HexahedronToHighOrderHexahedron<9, true>::points[] = {
    0.0,
    0.040233045916770627,
    0.13061306744724743,
    0.26103752509477773,
    0.4173605211668065,
    0.58263947883319345,
    0.73896247490522227,
    0.86938693255275257,
    0.95976695408322943,
    1.0
599
600
  };

601
602
603
604
605
606
607
608
609
610
611
612
613
614
  template <>
  const double HexahedronToHighOrderHexahedron<10, true>::points[] = {
    0.0,
    0.032999284795970474,
    0.10775826316842779,
    0.21738233650189748,
    0.35212093220653029,
    0.5,
    0.64787906779346971,
    0.78261766349810258,
    0.89224173683157226,
    0.96700071520402953,
    1.0
  };
615

616
617
618
619
620
621
622
  template <>
  const double HexahedronToHighOrderHexahedron<3, false>::points[] = {
    0.0,
    1.0/3.0,
    2.0/3.0,
    1.0
  };
623

624
625
626
627
628
629
630
631
  template <>
  const double HexahedronToHighOrderHexahedron<4, false>::points[] = {
    0.0,
    0.25,
    0.5,
    0.75,
    1.0
  };
632

633
634
635
636
637
638
639
640
641
  template <>
  const double HexahedronToHighOrderHexahedron<5, false>::points[] = {
    0.0,
    0.2,
    0.4,
    0.6,
    0.8,
    1.0
  };
642

643
644
645
646
647
648
649
650
651
652
  template <>
  const double HexahedronToHighOrderHexahedron<6, false>::points[] = {
    0.0,
    1.0/6.0,
    1.0/3.0,
    0.5,
    2.0/3.0,
    5.0/6.0,
    1.0
  };
653

654
655
656
657
658
659
660
661
662
663
664
  template <>
  const double HexahedronToHighOrderHexahedron<7, false>::points[] = {
    0.0,
    1.0/7.0,
    2.0/7.0,
    3.0/7.0,
    4.0/7.0,
    5.0/7.0,
    6.0/7.0,
    1.0
  };
665

666
667
668
669
670
671
672
673
674
675
676
677
  template <>
  const double HexahedronToHighOrderHexahedron<8, false>::points[] = {
    0.0,
    0.125,
    0.25,
    0.375,
    0.5,
    0.625,
    0.75,
    0.875,
    1.0
  };
678

679
680
681
682
683
684
685
686
687
688
689
690
  template <>
  const double HexahedronToHighOrderHexahedron<9, false>::points[] = {
    0.0,
    1.0/9.0,
    2.0/9.0,
    1.0/3.0,
    4.0/9.0,
    5.0/9.0,
    2.0/3.0,
    7.0/9.0,
    8.0/9.0,
    1.0
691
692
  };

693
694
695
696
697
698
699
700
701
702
703
704
705
706
  template <>
  const double HexahedronToHighOrderHexahedron<10, false>::points[] = {
    0.0,
    0.1,
    0.2,
    0.3,
    0.4,
    0.5,
    0.6,
    0.7,
    0.8,
    0.9,
    1.0
  };
707

708
709
  template <unsigned int ORDER>
  class HighOrderHexahedronToHexahedron : public Tessellator {
710
711
712

  public:

713
714
    HighOrderHexahedronToHexahedron() :
      Tessellator(ORDER * ORDER * ORDER)
715
716
717
718
    {
    }

    void
719
720
    tesselateTopology(shared_ptr<XdmfTopology> topologyToConvert,
                      shared_ptr<XdmfTopology> topologyToReturn) const
721
722
723
    {
      topologyToReturn->setType(XdmfTopologyType::Hexahedron());
      topologyToReturn->initialize(topologyToConvert->getArrayType(),
724
                                   8 * ORDER * ORDER * ORDER * topologyToConvert->getNumberElements());
725
726

      unsigned int newIndex = 0;
727
728
729
730
      int indexA = 0;
      int indexB = mNodesPerEdge * mNodesPerEdge;
      int indexC = mNodesPerEdge * mNodesPerEdge + mNodesPerEdge;
      int indexD = mNodesPerEdge;
731
      for(unsigned int i=0; i<topologyToConvert->getNumberElements(); ++i) {
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
        for(unsigned int j=0; j<ORDER; ++j) {
          for(unsigned int k=0; k<ORDER; ++k) {
            for(unsigned int l=0; l<ORDER; ++l){
              topologyToReturn->insert(newIndex++, topologyToConvert, indexA++);
              topologyToReturn->insert(newIndex++, topologyToConvert, indexB++);
              topologyToReturn->insert(newIndex++, topologyToConvert, indexC++);
              topologyToReturn->insert(newIndex++, topologyToConvert, indexD++);
              topologyToReturn->insert(newIndex++, topologyToConvert, indexA);
              topologyToReturn->insert(newIndex++, topologyToConvert, indexB);
              topologyToReturn->insert(newIndex++, topologyToConvert, indexC);
              topologyToReturn->insert(newIndex++, topologyToConvert, indexD);
            }
            indexA++;
            indexB++;
            indexC++;
            indexD++;
          }
          indexA += mNodesPerEdge;
          indexB += mNodesPerEdge;
          indexC += mNodesPerEdge;
          indexD += mNodesPerEdge;
        }
        indexA += mNodesPerEdge * mNodesPerEdge;
        indexB += mNodesPerEdge * mNodesPerEdge;
        indexC += mNodesPerEdge * mNodesPerEdge;
        indexD += mNodesPerEdge * mNodesPerEdge;
758
759
760
      }
    }

761
762
763
764
  private:
    static const unsigned int mNodesPerEdge = (ORDER + 1);
    static const unsigned int mNodesPerElement = mNodesPerEdge *
      mNodesPerEdge * mNodesPerEdge;
765
766

  };
767

768
}
769

770
shared_ptr<XdmfTopologyConverter>
771
XdmfTopologyConverter::New()
772
{
773
  shared_ptr<XdmfTopologyConverter> p(new XdmfTopologyConverter());
774
  return p;
775
776
}

777
778
779
780
781
782
783
784
XdmfTopologyConverter::XdmfTopologyConverter()
{
}

XdmfTopologyConverter::~XdmfTopologyConverter()
{
}

785
786
787
shared_ptr<XdmfUnstructuredGrid>
XdmfTopologyConverter::convert(const shared_ptr<XdmfUnstructuredGrid> gridToConvert,
                               const shared_ptr<const XdmfTopologyType> topologyType,
788
                               unsigned int options,
789
                               const shared_ptr<XdmfHeavyDataWriter> heavyDataWriter) const
790
{
791
  // Make sure geometry and topology are non null
792
  if(!(gridToConvert->getGeometry() && gridToConvert->getTopology()))
793
794
795
    XdmfError::message(XdmfError::FATAL,
                       "Current grid's geometry or topology is null "
                       "in XdmfTopologyConverter::convert");
796

797
  shared_ptr<const XdmfTopologyType> topologyTypeToConvert =
798
799
800
801
802
803
804
    gridToConvert->getTopology()->getType();
  if(topologyTypeToConvert == topologyType) {
    // No conversion necessary
    return gridToConvert;
  }

  if(gridToConvert->getGeometry()->getType() != XdmfGeometryType::XYZ()) {
805
806
807
    XdmfError::message(XdmfError::FATAL,
                       "Grid to convert's type is not 'XYZ' in "
                       "XdmfTopologyConverter::convert");
808
809
810
811
812
  }

  Converter * converter = NULL;
  if(topologyTypeToConvert == XdmfTopologyType::Hexahedron()) {
    if(topologyType == XdmfTopologyType::Hexahedron_64()) {
813
814
815
816
817
818
      if(options == 1) {
        converter = new HexahedronToHighOrderHexahedron<3, true>();
      }
      else {
        converter = new HexahedronToHighOrderHexahedron<3, false>();
      }
819
820
    }
    else if(topologyType == XdmfTopologyType::Hexahedron_125()) {
821
822
823
824
825
826
      if(options == 1) {
        converter = new HexahedronToHighOrderHexahedron<4, true>();
      }
      else {
        converter = new HexahedronToHighOrderHexahedron<4, false>();
      }
827
    }
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
    else if(topologyType == XdmfTopologyType::Hexahedron_216()) {
      if(options == 1) {
        converter = new HexahedronToHighOrderHexahedron<5, true>();
      }
      else {
        converter = new HexahedronToHighOrderHexahedron<5, false>();
      }
    }
    else if(topologyType == XdmfTopologyType::Hexahedron_343()) {
      if(options == 1) {
        converter = new HexahedronToHighOrderHexahedron<6, true>();
      }
      else {
        converter = new HexahedronToHighOrderHexahedron<6, false>();
      }
    }
    else if(topologyType == XdmfTopologyType::Hexahedron_512()) {
      if(options == 1) {
        converter = new HexahedronToHighOrderHexahedron<7, true>();
      }
      else {
        converter = new HexahedronToHighOrderHexahedron<7, false>();
      }
    }
    else if(topologyType == XdmfTopologyType::Hexahedron_729()) {
      if(options == 1) {
        converter = new HexahedronToHighOrderHexahedron<8, true>();
      }
      else {
        converter = new HexahedronToHighOrderHexahedron<8, false>();
      }
    }
    else if(topologyType == XdmfTopologyType::Hexahedron_1000()) {
      if(options == 1) {
        converter = new HexahedronToHighOrderHexahedron<9, true>();
      }
      else {
        converter = new HexahedronToHighOrderHexahedron<9, false>();
      }
    }
    else if(topologyType == XdmfTopologyType::Hexahedron_1331()) {
      if(options == 1) {
        converter = new HexahedronToHighOrderHexahedron<10, true>();
      }
      else {
        converter = new HexahedronToHighOrderHexahedron<10, false>();
      }
875
876
877
878
    }
  }
  else if(topologyTypeToConvert == XdmfTopologyType::Hexahedron_64()) {
    if(topologyType == XdmfTopologyType::Hexahedron()) {
879
      converter = new HighOrderHexahedronToHexahedron<3>();
880
881
882
883
    }
  }
  else if(topologyTypeToConvert == XdmfTopologyType::Hexahedron_125()) {
    if(topologyType == XdmfTopologyType::Hexahedron()) {
884
885
886
887
888
889
890
891
892
893
894
      converter = new HighOrderHexahedronToHexahedron<4>();
    }
  }
  else if(topologyTypeToConvert == XdmfTopologyType::Hexahedron_216()) {
    if(topologyType == XdmfTopologyType::Hexahedron()) {
      converter = new HighOrderHexahedronToHexahedron<5>();
    }
  }
  else if(topologyTypeToConvert == XdmfTopologyType::Hexahedron_343()) {
    if(topologyType == XdmfTopologyType::Hexahedron()) {
      converter = new HighOrderHexahedronToHexahedron<6>();
895
896
    }
  }
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
  else if(topologyTypeToConvert == XdmfTopologyType::Hexahedron_512()) {
    if(topologyType == XdmfTopologyType::Hexahedron()) {
      converter = new HighOrderHexahedronToHexahedron<7>();
    }
  }
  else if(topologyTypeToConvert == XdmfTopologyType::Hexahedron_729()) {
    if(topologyType == XdmfTopologyType::Hexahedron()) {
      converter = new HighOrderHexahedronToHexahedron<8>();
    }
  }
  else if(topologyTypeToConvert == XdmfTopologyType::Hexahedron_1000()) {
    if(topologyType == XdmfTopologyType::Hexahedron()) {
      converter = new HighOrderHexahedronToHexahedron<9>();
    }
  }
  else if(topologyTypeToConvert == XdmfTopologyType::Hexahedron_1331()) {
    if(topologyType == XdmfTopologyType::Hexahedron()) {
      converter = new HighOrderHexahedronToHexahedron<10>();
    }
  }

918
  if(converter) {
919
    shared_ptr<XdmfUnstructuredGrid> toReturn =
920
921
922
      converter->convert(gridToConvert,
                         topologyType,
                         heavyDataWriter);
923
924
925
926
    delete converter;
    return toReturn;
  }
  else {
927
928
929
    XdmfError::message(XdmfError::FATAL,
                       "Cannot convert topology type in "
                       "XdmfTopologyConverter::convert");
930
  }
931
}