Commit b7142e92 authored by James Bigler's avatar James Bigler
Browse files

Updated formatting of documentation plus a little reorganization.

parent fb9d7d3c
# - Tools for building C for CUDA files: libraries and build dependencies.
# - Tools for building CUDA C files: libraries and build dependencies.
# This script locates the Nvidia Compute Unified Driver Architecture (CUDA)
# tools. It should work on linux, windows, and mac and should be reasonably
# up to date with cuda releases.
......@@ -7,18 +7,25 @@
# REQUIRED and QUIET. CUDA_FOUND will report if an acceptable version of CUDA
# was found.
#
# The script will prompt the user to specify CUDA_TOOLKIT_ROOT_DIR if the
# prefix cannot be determined by the location of nvcc in the system path. To
# use a different installed version of the toolkit set the environment variable
# CUDA_BIN_PATH before running cmake (e.g. CUDA_BIN_PATH=/usr/local/cuda1.0
# instead of the default /usr/local/cuda).
# The script will prompt the user to specify CUDA_TOOLKIT_ROOT_DIR if the prefix
# cannot be determined by the location of nvcc in the system path and REQUIRED
# is specified to find_package(). To use a different installed version of the
# toolkit set the environment variable CUDA_BIN_PATH before running cmake
# (e.g. CUDA_BIN_PATH=/usr/local/cuda1.0 instead of the default
# /usr/local/cuda) or set CUDA_TOOLKIT_ROOT_DIR after configuring.
#
# It might be necessary to set CUDA_TOOLKIT_ROOT_DIR manually on certain
# platforms, or to use a cuda runtime not installed in the default location. In
# newer versions of the toolkit the cuda library is included with the graphics
# driver- be sure that the driver version matches what is needed by the cuda
# runtime version.
#
# Set CUDA_BUILD_EMULATION to ON for Emulation mode. Defaults to OFF (device
# mode).
# _DEVICEEMU is defined when CUDA_BUILD_EMULATION is TRUE.
# mode). -D_DEVICEEMU is defined for CUDA C files when CUDA_BUILD_EMULATION is
# TRUE.
#
# Set CUDA_HOST_COMPILATION_CPP to OFF for C compilation of host code.
# Default TRUE.
# Set CUDA_HOST_COMPILATION_CPP to OFF for C compilation of host code. Default
# TRUE.
#
# Set CUDA_BUILD_CUBIN to "ON" or "OFF" to enable and extra compilation pass
# with the -cubin option in Device mode. The output is parsed and register,
......@@ -59,148 +66,140 @@
#
# The script creates the following macros:
#
# CUDA_INCLUDE_DIRECTORIES( path0 path1 ... )
# -- Sets the directories that should be passed to nvcc
# (e.g. nvcc -Ipath0 -Ipath1 ... ). These paths usually contain other .cu
# files.
# CUDA_INCLUDE_DIRECTORIES( path0 path1 ... )
# -- Sets the directories that should be passed to nvcc
# (e.g. nvcc -Ipath0 -Ipath1 ... ). These paths usually contain other .cu
# files.
#
# CUDA_ADD_LIBRARY( cuda_target file0 file1 ...
# [STATIC | SHARED | MODULE] [EXCLUDE_FROM_ALL] [OPTIONS ...] )
# -- Creates a shared library "cuda_target" which contains all of the source
# (*.c, *.cc, etc.) specified and all of the nvcc'ed .cu files specified.
# All of the specified source files and generated .cpp files are compiled
# using the standard CMake compiler, so the normal INCLUDE_DIRECTORIES,
# LINK_DIRECTORIES, and TARGET_LINK_LIBRARIES can be used to affect their
# build and link. In addition CUDA_INCLUDE_DIRS is added automatically added
# to include_directories().
# CUDA_ADD_LIBRARY( cuda_target file0 file1 ...
# [STATIC | SHARED | MODULE] [EXCLUDE_FROM_ALL] [OPTIONS ...] )
# -- Creates a shared library "cuda_target" which contains all of the source
# (*.c, *.cc, etc.) specified and all of the nvcc'ed .cu files specified.
# All of the specified source files and generated .cpp files are compiled
# using the standard CMake compiler, so the normal INCLUDE_DIRECTORIES,
# LINK_DIRECTORIES, and TARGET_LINK_LIBRARIES can be used to affect their
# build and link. In addition CUDA_INCLUDE_DIRS is added automatically
# added to include_directories().
#
# CUDA_ADD_EXECUTABLE( cuda_target file0 file1 ...
# [WIN32] [MACOSX_BUNDLE] [EXCLUDE_FROM_ALL] [OPTIONS ...] )
# -- Same as CUDA_ADD_LIBRARY except that an exectuable is created.
# CUDA_ADD_EXECUTABLE( cuda_target file0 file1 ...
# [WIN32] [MACOSX_BUNDLE] [EXCLUDE_FROM_ALL] [OPTIONS ...] )
# -- Same as CUDA_ADD_LIBRARY except that an exectuable is created.
#
# CUDA_COMPILE( generated_files file0 file1 ... [STATIC | SHARED | MODULE]
# [OPTIONS ...] )
# -- Returns a list of generated files from the input source files to be used
# with ADD_LIBRARY or ADD_EXECUTABLE.
# CUDA_COMPILE( generated_files file0 file1 ... [STATIC | SHARED | MODULE]
# [OPTIONS ...] )
# -- Returns a list of generated files from the input source files to be used
# with ADD_LIBRARY or ADD_EXECUTABLE.
#
# CUDA_COMPILE_PTX( generated_files file0 file1 ... [OPTIONS ...] )
# -- Returns a list of PTX files generated from the input source files.
# CUDA_COMPILE_PTX( generated_files file0 file1 ... [OPTIONS ...] )
# -- Returns a list of PTX files generated from the input source files.
#
# CUDA_WRAP_SRCS ( cuda_target format generated_files file0 file1 ...
# [STATIC | SHARED | MODULE] [OPTIONS ...] )
# -- This is where all the magic happens. CUDA_ADD_EXECUTABLE,
# CUDA_ADD_LIBRARY, CUDA_COMPILE, and CUDA_COMPILE_PTX all call this function
# under the hood.
# CUDA_WRAP_SRCS ( cuda_target format generated_files file0 file1 ...
# [STATIC | SHARED | MODULE] [OPTIONS ...] )
# -- This is where all the magic happens. CUDA_ADD_EXECUTABLE,
# CUDA_ADD_LIBRARY, CUDA_COMPILE, and CUDA_COMPILE_PTX all call this
# function under the hood.
#
# Given the list of files (file0 file1 ... fileN) this macro generates custom
# commands that generate either PTX or linkable objects (use "PTX" or "OBJ"
# for the format argument to switch. Files that don't end with .cu or have
# the HEADER_FILE_ONLY property are ignored.
# Given the list of files (file0 file1 ... fileN) this macro generates
# custom commands that generate either PTX or linkable objects (use "PTX" or
# "OBJ" for the format argument to switch. Files that don't end with .cu or
# have the HEADER_FILE_ONLY property are ignored.
#
# The arguments passed in after OPTIONS are extra command line options to
# give to NVCC. You can also specify per configuration options by specifying
# the name of the configuration followed by the options. General options
# must preceed configuration specific options. Not all configurations need
# to be specified, only the ones provided will be used.
# The arguments passed in after OPTIONS are extra command line options to
# give to NVCC. You can also specify per configuration options by
# specifying the name of the configuration followed by the options. General
# options must preceed configuration specific options. Not all
# configurations need to be specified, only the ones provided will be used.
#
# OPTIONS -DFLAG=2 "-DFLAG_OTHER=space in flag"
# DEBUG -g
# RELEASE --use_fast_math
# RELWITHDEBINFO --use_fast_math;-g
# MINSIZEREL --use_fast_math
# OPTIONS -DFLAG=2 "-DFLAG_OTHER=space in flag"
# DEBUG -g
# RELEASE --use_fast_math
# RELWITHDEBINFO --use_fast_math;-g
# MINSIZEREL --use_fast_math
#
# For certain configurations (namely VS generating object files with
# CUDA_ATTACH_VS_BUILD_RULE_TO_CUDA_FILE set to ON), no generated file will
# be produced for the given cuda file. This is because when you add the cuda
# file to Visual Studio it knows that this file produces and will link in the
# resulting object file automatically.
# For certain configurations (namely VS generating object files with
# CUDA_ATTACH_VS_BUILD_RULE_TO_CUDA_FILE set to ON), no generated file will
# be produced for the given cuda file. This is because when you add the
# cuda file to Visual Studio it knows that this file produces and will link
# in the resulting object file automatically.
#
# This script also looks at optional arguments STATIC, SHARED, or MODULE to
# override the behavior specified by the value of the CMake variable
# BUILD_SHARED_LIBS. See BUILD_SHARED_LIBS below for more details.
# This script also looks at optional arguments STATIC, SHARED, or MODULE to
# override the behavior specified by the value of the CMake variable
# BUILD_SHARED_LIBS. See BUILD_SHARED_LIBS below for more details.
#
# This script will also generate a separate cmake script that is used at
# build time to invoke nvcc. This is for serveral reasons.
# This script will also generate a separate cmake script that is used at
# build time to invoke nvcc. This is for serveral reasons.
#
# 1. nvcc can return negative numbers as return values which confuses
# Visual Studio into thinking that the command succeeded. The script now
# checks the error codes and produces errors when there was a problem
# 1. nvcc can return negative numbers as return values which confuses
# Visual Studio into thinking that the command succeeded. The script now
# checks the error codes and produces errors when there was a problem
#
# 2. nvcc has been known to not delete intermediate results when it
# encounters problems. The build rules then don't complete, because there
# exists a partially written output file. The script now deletes the
# output files if there was an error.
# 2. nvcc has been known to not delete intermediate results when it
# encounters problems. The build rules then don't complete, because there
# exists a partially written output file. The script now deletes the
# output files if there was an error.
#
# 3. By putting all the options that affect the build into a file and then
# make the build rule dependent on the file, when the options change the
# output files will be regenerated.
# 3. By putting all the options that affect the build into a file and then
# make the build rule dependent on the file, when the options change the
# output files will be regenerated.
#
# CUDA_ADD_CUFFT_TO_TARGET( cuda_target )
# -- Adds the cufft library to the target. Handles whether you are in emulation
# mode or not.
# CUDA_ADD_CUFFT_TO_TARGET( cuda_target )
# -- Adds the cufft library to the target. Handles whether you are in
# emulation mode or not.
#
# CUDA_ADD_CUBLAS_TO_TARGET( cuda_target )
# -- Adds the cublas library to the target. Handles whether you are in emulation
# mode or not.
# CUDA_ADD_CUBLAS_TO_TARGET( cuda_target )
# -- Adds the cublas library to the target. Handles whether you are in
# emulation mode or not.
#
# CUDA_BUILD_CLEAN_TARGET()
# -- Creates a convience target that deletes all the dependency files generated.
# You should make clean after running this target to ensure the dependency
# files get regenerated.
# CUDA_BUILD_CLEAN_TARGET()
# -- Creates a convience target that deletes all the dependency files
# generated. You should make clean after running this target to ensure the
# dependency files get regenerated.
#
# The script defines the following variables:
#
# ( Note CUDA_ADD_* macros setup cuda/cut library dependencies automatically.
# These variables are only needed if a cuda API call must be made from code in
# a outside library or executable. )
# ( Note CUDA_ADD_* macros setup cuda/cut library dependencies automatically.
# These variables are only needed if a cuda API call must be made from code in
# a outside library or executable. )
#
# CUDA_VERSION_MAJOR -- The major version of cuda as reported by nvcc.
# CUDA_VERSION_MINOR -- The minor version.
# CUDA_VERSION
# CUDA_VERSION_STRING -- CUDA_VERSION_MAJOR.CUDA_VERSION_MINOR
# CUDA_VERSION_MAJOR -- The major version of cuda as reported by nvcc.
# CUDA_VERSION_MINOR -- The minor version.
# CUDA_VERSION
# CUDA_VERSION_STRING -- CUDA_VERSION_MAJOR.CUDA_VERSION_MINOR
#
# CUDA_INCLUDE_DIRS -- Include directory for cuda headers. Added automatically
# for CUDA_ADD_EXECUTABLE and CUDA_ADD_LIBRARY.
# CUDA_LIBRARIES -- Cuda RT library.
# CUDA_CUT_INCLUDE_DIR -- Include directory for cuda SDK headers (cutil.h).
# CUDA_CUT_LIBRARIES -- SDK libraries.
# CUDA_NVCC_FLAGS -- Additional NVCC command line arguments. NOTE:
# multiple arguments must be semi-colon delimited
# e.g. --compiler-options;-Wall
# CUDA_NVCC_FLAGS_<CONFIG> -- Confugration specific flags for NVCC.
# CUDA_CUFFT_LIBRARIES -- Device or emulation library for the Cuda FFT
# implementation (alternative to:
# CUDA_ADD_CUFFT_TO_TARGET macro)
# CUDA_CUBLAS_LIBRARIES -- Device or emulation library for the Cuda BLAS
# implementation (alterative to:
# CUDA_ADD_CUBLAS_TO_TARGET macro).
# CUDA_INCLUDE_DIRS -- Include directory for cuda headers. Added automatically
# for CUDA_ADD_EXECUTABLE and CUDA_ADD_LIBRARY.
# CUDA_LIBRARIES -- Cuda RT library.
# CUDA_CUT_INCLUDE_DIR -- Include directory for cuda SDK headers (cutil.h).
# CUDA_CUT_LIBRARIES -- SDK libraries.
# CUDA_NVCC_FLAGS -- Additional NVCC command line arguments. NOTE:
# multiple arguments must be semi-colon delimited
# e.g. --compiler-options;-Wall
# CUDA_NVCC_FLAGS_<CONFIG> -- Confugration specific flags for NVCC.
# CUDA_CUFFT_LIBRARIES -- Device or emulation library for the Cuda FFT
# implementation (alternative to:
# CUDA_ADD_CUFFT_TO_TARGET macro)
# CUDA_CUBLAS_LIBRARIES -- Device or emulation library for the Cuda BLAS
# implementation (alterative to:
# CUDA_ADD_CUBLAS_TO_TARGET macro).
#
#
# The script now builds object files instead of generating C files. In order to
# facilitate this, the script now makes use of the CMAKE_{C,CXX}_FLAGS along
# with their configuration dependent counterparts (i.e. CMAKE_C_FLAGS_DEBUG).
# These flags are passed through nvcc to the native compiler. In addition, on
# some systems special flags are added for building objects intended for shared
# libraries. FindCUDA make use of the CMake variable BUILD_SHARED_LIBS and the
# usual STATIC, SHARED, and MODULE arguments to determine if these flags should
# be used. Please set BUILD_SHARED_LIBS or pass in STATIC, SHARED, or MODULE
# according to how the objects are to be used before calling CUDA_ADD_LIBRARY.
# A preprocessor macro, <target_name>_EXPORTS is defined when BUILD_SHARED_LIBS
# is defined. In addition, flags passed into add_definitions with -D or /D are
# passed along to nvcc.
# The script generates object files by default. In order to facilitate this,
# the script makes use of the CMAKE_{C,CXX}_FLAGS along with their configuration
# dependent counterparts (i.e. CMAKE_C_FLAGS_DEBUG). These flags are passed
# through nvcc to the native compiler. In addition, on some systems special
# flags are added for building objects intended for shared libraries. FindCUDA
# make use of the CMake variable BUILD_SHARED_LIBS and the usual STATIC, SHARED,
# and MODULE arguments to determine if these flags should be used. Please set
# BUILD_SHARED_LIBS or pass in STATIC, SHARED, or MODULE according to how the
# objects are to be used before calling CUDA_ADD_LIBRARY. A preprocessor macro,
# <target_name>_EXPORTS is defined when BUILD_SHARED_LIBS is defined. In
# addition, flags passed into add_definitions with -D or /D are passed along to
# nvcc.
#
# Files with the HEADER_FILE_ONLY property set will not be compiled.
#
# It might be necessary to set CUDA_TOOLKIT_ROOT_DIR manually on certain platforms,
# or to use a cuda runtime not installed in the default location. In newer
# versions of the toolkit the cuda library is included with the graphics
# driver- be sure that the driver version matches what is needed by the cuda
# runtime version.
#
# * James Bigler, NVIDIA Corp
# * Abe Stephens, SCI Institute -- http://www.sci.utah.edu/~abe/FindCuda.html
#
# The MIT License
# James Bigler, NVIDIA Corp
# Abe Stephens, SCI Institute -- http://www.sci.utah.edu/~abe/FindCuda.html
#
# Copyright (c) 2008-2009
# NVIDIA Corp.
......@@ -208,24 +207,29 @@
# Copyright (c) 2007-2009
# Scientific Computing and Imaging Institute, University of Utah
#
# License for the specific language governing rights and limitations under
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
# This code is licensed under the MIT License. See the FindCUDA.cmake script
# for the text of the license.
# The MIT License
#
# License for the specific language governing rights and limitations under
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
###############################################################################
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment