From 3216e94cef3cd4afa558d9adef29921a9330935d Mon Sep 17 00:00:00 2001
From: Brad King <brad.king@kitware.com>
Date: Thu, 3 Nov 2016 13:28:03 -0400
Subject: [PATCH] Remove unused cm_sha2 infrastructure

All clients of `cm_sha2` have been ported to `cmCryptoHash`, which now
uses librhash internally.
---
 CTestCustom.cmake.in                |    2 -
 Source/.gitattributes               |    3 -
 Source/CMakeLists.txt               |    2 -
 Source/cm_sha2.c                    | 1613 ---------------------------
 Source/cm_sha2.h                    |  140 ---
 Source/cm_sha2_mangle.h             |   42 -
 Utilities/Scripts/clang-format.bash |    2 +-
 7 files changed, 1 insertion(+), 1803 deletions(-)
 delete mode 100644 Source/cm_sha2.c
 delete mode 100644 Source/cm_sha2.h
 delete mode 100644 Source/cm_sha2_mangle.h

diff --git a/CTestCustom.cmake.in b/CTestCustom.cmake.in
index 48dd3debc2..07a9fdb1d0 100644
--- a/CTestCustom.cmake.in
+++ b/CTestCustom.cmake.in
@@ -17,7 +17,6 @@ list(APPEND CTEST_CUSTOM_WARNING_EXCEPTION
   "Utilities.cmbzip2."
   "Source.CTest.Curl"
   "Source.CursesDialog.form"
-  "Source.cm_sha2.*warning.*cast increases required alignment of target type"
   "Utilities.cmcurl"
   "Utilities.cmexpat."
   "Utilities.cmlibarchive"
@@ -84,7 +83,6 @@ list(APPEND CTEST_CUSTOM_WARNING_EXCEPTION
   "warning: Value stored to 'yytoken' is never read"
   "index_encoder.c.241.2. warning: Value stored to .out_start. is never read"
   "index.c.*warning: Access to field.*results in a dereference of a null pointer.*loaded from variable.*"
-  "cm_sha2.*warning: Value stored to.*is never read"
   "cmFortranLexer.cxx:[0-9]+:[0-9]+: warning: Call to 'realloc' has an allocation size of 0 bytes"
   "testProcess.*warning: Dereference of null pointer .loaded from variable .invalidAddress.."
   "liblzma/simple/x86.c:[0-9]+:[0-9]+: warning: The result of the '<<' expression is undefined"
diff --git a/Source/.gitattributes b/Source/.gitattributes
index 5002b2aff5..e9e35bd68e 100644
--- a/Source/.gitattributes
+++ b/Source/.gitattributes
@@ -1,6 +1,3 @@
-# Preserve upstream indentation style.
-cm_sha2.*        whitespace=indent-with-non-tab
-
 # Preserve indentation style in generated code.
 cmListFileLexer.c       whitespace=-tab-in-indent,-indent-with-non-tab
 cmFortranLexer.cxx      whitespace=-tab-in-indent,-indent-with-non-tab
diff --git a/Source/CMakeLists.txt b/Source/CMakeLists.txt
index 879272cfa0..718b022466 100644
--- a/Source/CMakeLists.txt
+++ b/Source/CMakeLists.txt
@@ -626,8 +626,6 @@ set(SRCS
   cm_auto_ptr.hxx
   cm_get_date.h
   cm_get_date.c
-  cm_sha2.h
-  cm_sha2.c
   cm_utf8.h
   cm_utf8.c
   cm_codecvt.hxx
diff --git a/Source/cm_sha2.c b/Source/cm_sha2.c
deleted file mode 100644
index 649c39aaf6..0000000000
--- a/Source/cm_sha2.c
+++ /dev/null
@@ -1,1613 +0,0 @@
-/*
- * FILE:	sha2.c
- * AUTHOR:	Aaron D. Gifford
- *		http://www.aarongifford.com/computers/sha.html
- *
- * Copyright (c) 2000-2003, Aaron D. Gifford
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the copyright holder nor the names of contributors
- *    may be used to endorse or promote products derived from this software
- *    without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * $Id: sha2.c,v 1.4 2004/01/07 22:58:18 adg Exp $
- */
-
-#include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
-#include <assert.h>	/* assert() */
-#include "cm_sha2.h"	/* "sha2.h" -> "cm_sha2.h" renamed for CMake */
-
-/*
- * ASSERT NOTE:
- * Some sanity checking code is included using assert().  On my FreeBSD
- * system, this additional code can be removed by compiling with NDEBUG
- * defined.  Check your own systems manpage on assert() to see how to
- * compile WITHOUT the sanity checking code on your system.
- *
- * UNROLLED TRANSFORM LOOP NOTE:
- * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
- * loop version for the hash transform rounds (defined using macros
- * later in this file).  Either define on the command line, for example:
- *
- *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
- *
- * or define below:
- *
- *   #define SHA2_UNROLL_TRANSFORM
- *
- */
-
-
-/*** SHA-224/256/384/512 Machine Architecture Definitions *************/
-/*
- * BYTE_ORDER NOTE:
- *
- * Please make sure that your system defines BYTE_ORDER.  If your
- * architecture is little-endian, make sure it also defines
- * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
- * equivilent.
- *
- * If your system does not define the above, then you can do so by
- * hand like this:
- *
- *   #define LITTLE_ENDIAN 1234
- *   #define BIG_ENDIAN    4321
- *
- * And for little-endian machines, add:
- *
- *   #define BYTE_ORDER LITTLE_ENDIAN
- *
- * Or for big-endian machines:
- *
- *   #define BYTE_ORDER BIG_ENDIAN
- *
- * The FreeBSD machine this was written on defines BYTE_ORDER
- * appropriately by including <sys/types.h> (which in turn includes
- * <machine/endian.h> where the appropriate definitions are actually
- * made).
- */
-#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
-/* CMake modification: use byte order from KWIML.  */
-# undef BYTE_ORDER
-# undef BIG_ENDIAN
-# undef LITTLE_ENDIAN
-# define BYTE_ORDER    KWIML_ABI_ENDIAN_ID
-# define BIG_ENDIAN    KWIML_ABI_ENDIAN_ID_BIG
-# define LITTLE_ENDIAN KWIML_ABI_ENDIAN_ID_LITTLE
-#endif
-
-/* CMake modification: use types computed in header.  */
-typedef cm_sha2_uint8_t  sha_byte;	/* Exactly 1 byte */
-typedef cm_sha2_uint32_t sha_word32;	/* Exactly 4 bytes */
-typedef cm_sha2_uint64_t sha_word64;	/* Exactly 8 bytes */
-#define SHA_UINT32_C(x) KWIML_INT_UINT32_C(x)
-#define SHA_UINT64_C(x) KWIML_INT_UINT64_C(x)
-#if defined(__clang__)
-# pragma clang diagnostic ignored "-Wcast-align"
-#endif
-
-/*** ENDIAN REVERSAL MACROS *******************************************/
-#if BYTE_ORDER == LITTLE_ENDIAN
-#define REVERSE32(w,x)	{ \
-	sha_word32 tmp = (w); \
-	tmp = (tmp >> 16) | (tmp << 16); \
-	(x) = ((tmp & SHA_UINT32_C(0xff00ff00)) >> 8) | \
-	      ((tmp & SHA_UINT32_C(0x00ff00ff)) << 8); \
-}
-#define REVERSE64(w,x)	{ \
-	sha_word64 tmp = (w); \
-	tmp = (tmp >> 32) | (tmp << 32); \
-	tmp = ((tmp & SHA_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \
-	      ((tmp & SHA_UINT64_C(0x00ff00ff00ff00ff)) << 8); \
-	(x) = ((tmp & SHA_UINT64_C(0xffff0000ffff0000)) >> 16) | \
-	      ((tmp & SHA_UINT64_C(0x0000ffff0000ffff)) << 16); \
-}
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-
-/*
- * Macro for incrementally adding the unsigned 64-bit integer n to the
- * unsigned 128-bit integer (represented using a two-element array of
- * 64-bit words):
- */
-#define ADDINC128(w,n)	{ \
-	(w)[0] += (sha_word64)(n); \
-	if ((w)[0] < (n)) { \
-		(w)[1]++; \
-	} \
-}
-
-/*
- * Macros for copying blocks of memory and for zeroing out ranges
- * of memory.  Using these macros makes it easy to switch from
- * using memset()/memcpy() and using bzero()/bcopy().
- *
- * Please define either SHA2_USE_MEMSET_MEMCPY or define
- * SHA2_USE_BZERO_BCOPY depending on which function set you
- * choose to use:
- */
-#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
-/* Default to memset()/memcpy() if no option is specified */
-#define	SHA2_USE_MEMSET_MEMCPY	1
-#endif
-#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
-/* Abort with an error if BOTH options are defined */
-#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
-#endif
-
-#ifdef SHA2_USE_MEMSET_MEMCPY
-#define MEMSET_BZERO(p,l)	memset((p), 0, (l))
-#define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
-#endif
-#ifdef SHA2_USE_BZERO_BCOPY
-#define MEMSET_BZERO(p,l)	bzero((p), (l))
-#define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
-#endif
-
-
-/*** THE SIX LOGICAL FUNCTIONS ****************************************/
-/*
- * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
- *
- *   NOTE:  In the original SHA-256/384/512 document, the shift-right
- *   function was named R and the rotate-right function was called S.
- *   (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the
- *   web.)
- *
- *   The newer NIST FIPS 180-2 document uses a much clearer naming
- *   scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for
- *   rotate-left.  (See:
- *   http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
- *   on the web.)
- *
- *   WARNING: These macros must be used cautiously, since they reference
- *   supplied parameters sometimes more than once, and thus could have
- *   unexpected side-effects if used without taking this into account.
- */
-/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
-#define SHR(b,x) 		((x) >> (b))
-/* 32-bit Rotate-right (used in SHA-256): */
-#define ROTR32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
-/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
-#define ROTR64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
-/* 32-bit Rotate-left (used in SHA-1): */
-#define ROTL32(b,x)	(((x) << (b)) | ((x) >> (32 - (b))))
-
-/* Two logical functions used in SHA-1, SHA-254, SHA-256, SHA-384, and SHA-512: */
-#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
-#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
-
-/* Function used in SHA-1: */
-#define Parity(x,y,z)	((x) ^ (y) ^ (z))
-
-/* Four logical functions used in SHA-256: */
-#define Sigma0_256(x)	(ROTR32(2,  (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x)))
-#define Sigma1_256(x)	(ROTR32(6,  (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x)))
-#define sigma0_256(x)	(ROTR32(7,  (x)) ^ ROTR32(18, (x)) ^ SHR(   3 , (x)))
-#define sigma1_256(x)	(ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR(   10, (x)))
-
-/* Four of six logical functions used in SHA-384 and SHA-512: */
-#define Sigma0_512(x)	(ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x)))
-#define Sigma1_512(x)	(ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x)))
-#define sigma0_512(x)	(ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR(    7, (x)))
-#define sigma1_512(x)	(ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR(    6, (x)))
-
-/*** INTERNAL FUNCTION PROTOTYPES *************************************/
-
-/* SHA-224 and SHA-256: */
-void SHA256_Internal_Init(SHA_CTX*, const sha_word32*);
-void SHA256_Internal_Last(SHA_CTX*);
-void SHA256_Internal_Transform(SHA_CTX*, const sha_word32*);
-
-/* SHA-384 and SHA-512: */
-void SHA512_Internal_Init(SHA_CTX*, const sha_word64*);
-void SHA512_Internal_Last(SHA_CTX*);
-void SHA512_Internal_Transform(SHA_CTX*, const sha_word64*);
-
-
-/*** SHA2 INITIAL HASH VALUES AND CONSTANTS ***************************/
-
-/* Hash constant words K for SHA-1: */
-#define K1_0_TO_19	SHA_UINT32_C(0x5a827999)
-#define K1_20_TO_39	SHA_UINT32_C(0x6ed9eba1)
-#define K1_40_TO_59	SHA_UINT32_C(0x8f1bbcdc)
-#define K1_60_TO_79	SHA_UINT32_C(0xca62c1d6)
-
-/* Initial hash value H for SHA-1: */
-static const sha_word32 sha1_initial_hash_value[5] = {
-	SHA_UINT32_C(0x67452301),
-	SHA_UINT32_C(0xefcdab89),
-	SHA_UINT32_C(0x98badcfe),
-	SHA_UINT32_C(0x10325476),
-	SHA_UINT32_C(0xc3d2e1f0)
-};
-
-/* Hash constant words K for SHA-224 and SHA-256: */
-static const sha_word32 K256[64] = {
-	SHA_UINT32_C(0x428a2f98), SHA_UINT32_C(0x71374491),
-	SHA_UINT32_C(0xb5c0fbcf), SHA_UINT32_C(0xe9b5dba5),
-	SHA_UINT32_C(0x3956c25b), SHA_UINT32_C(0x59f111f1),
-	SHA_UINT32_C(0x923f82a4), SHA_UINT32_C(0xab1c5ed5),
-	SHA_UINT32_C(0xd807aa98), SHA_UINT32_C(0x12835b01),
-	SHA_UINT32_C(0x243185be), SHA_UINT32_C(0x550c7dc3),
-	SHA_UINT32_C(0x72be5d74), SHA_UINT32_C(0x80deb1fe),
-	SHA_UINT32_C(0x9bdc06a7), SHA_UINT32_C(0xc19bf174),
-	SHA_UINT32_C(0xe49b69c1), SHA_UINT32_C(0xefbe4786),
-	SHA_UINT32_C(0x0fc19dc6), SHA_UINT32_C(0x240ca1cc),
-	SHA_UINT32_C(0x2de92c6f), SHA_UINT32_C(0x4a7484aa),
-	SHA_UINT32_C(0x5cb0a9dc), SHA_UINT32_C(0x76f988da),
-	SHA_UINT32_C(0x983e5152), SHA_UINT32_C(0xa831c66d),
-	SHA_UINT32_C(0xb00327c8), SHA_UINT32_C(0xbf597fc7),
-	SHA_UINT32_C(0xc6e00bf3), SHA_UINT32_C(0xd5a79147),
-	SHA_UINT32_C(0x06ca6351), SHA_UINT32_C(0x14292967),
-	SHA_UINT32_C(0x27b70a85), SHA_UINT32_C(0x2e1b2138),
-	SHA_UINT32_C(0x4d2c6dfc), SHA_UINT32_C(0x53380d13),
-	SHA_UINT32_C(0x650a7354), SHA_UINT32_C(0x766a0abb),
-	SHA_UINT32_C(0x81c2c92e), SHA_UINT32_C(0x92722c85),
-	SHA_UINT32_C(0xa2bfe8a1), SHA_UINT32_C(0xa81a664b),
-	SHA_UINT32_C(0xc24b8b70), SHA_UINT32_C(0xc76c51a3),
-	SHA_UINT32_C(0xd192e819), SHA_UINT32_C(0xd6990624),
-	SHA_UINT32_C(0xf40e3585), SHA_UINT32_C(0x106aa070),
-	SHA_UINT32_C(0x19a4c116), SHA_UINT32_C(0x1e376c08),
-	SHA_UINT32_C(0x2748774c), SHA_UINT32_C(0x34b0bcb5),
-	SHA_UINT32_C(0x391c0cb3), SHA_UINT32_C(0x4ed8aa4a),
-	SHA_UINT32_C(0x5b9cca4f), SHA_UINT32_C(0x682e6ff3),
-	SHA_UINT32_C(0x748f82ee), SHA_UINT32_C(0x78a5636f),
-	SHA_UINT32_C(0x84c87814), SHA_UINT32_C(0x8cc70208),
-	SHA_UINT32_C(0x90befffa), SHA_UINT32_C(0xa4506ceb),
-	SHA_UINT32_C(0xbef9a3f7), SHA_UINT32_C(0xc67178f2)
-};
-
-/* Initial hash value H for SHA-224: */
-static const sha_word32 sha224_initial_hash_value[8] = {
-	SHA_UINT32_C(0xc1059ed8),
-	SHA_UINT32_C(0x367cd507),
-	SHA_UINT32_C(0x3070dd17),
-	SHA_UINT32_C(0xf70e5939),
-	SHA_UINT32_C(0xffc00b31),
-	SHA_UINT32_C(0x68581511),
-	SHA_UINT32_C(0x64f98fa7),
-	SHA_UINT32_C(0xbefa4fa4)
-};
-
-/* Initial hash value H for SHA-256: */
-static const sha_word32 sha256_initial_hash_value[8] = {
-	SHA_UINT32_C(0x6a09e667),
-	SHA_UINT32_C(0xbb67ae85),
-	SHA_UINT32_C(0x3c6ef372),
-	SHA_UINT32_C(0xa54ff53a),
-	SHA_UINT32_C(0x510e527f),
-	SHA_UINT32_C(0x9b05688c),
-	SHA_UINT32_C(0x1f83d9ab),
-	SHA_UINT32_C(0x5be0cd19)
-};
-
-/* Hash constant words K for SHA-384 and SHA-512: */
-static const sha_word64 K512[80] = {
-	SHA_UINT64_C(0x428a2f98d728ae22), SHA_UINT64_C(0x7137449123ef65cd),
-	SHA_UINT64_C(0xb5c0fbcfec4d3b2f), SHA_UINT64_C(0xe9b5dba58189dbbc),
-	SHA_UINT64_C(0x3956c25bf348b538), SHA_UINT64_C(0x59f111f1b605d019),
-	SHA_UINT64_C(0x923f82a4af194f9b), SHA_UINT64_C(0xab1c5ed5da6d8118),
-	SHA_UINT64_C(0xd807aa98a3030242), SHA_UINT64_C(0x12835b0145706fbe),
-	SHA_UINT64_C(0x243185be4ee4b28c), SHA_UINT64_C(0x550c7dc3d5ffb4e2),
-	SHA_UINT64_C(0x72be5d74f27b896f), SHA_UINT64_C(0x80deb1fe3b1696b1),
-	SHA_UINT64_C(0x9bdc06a725c71235), SHA_UINT64_C(0xc19bf174cf692694),
-	SHA_UINT64_C(0xe49b69c19ef14ad2), SHA_UINT64_C(0xefbe4786384f25e3),
-	SHA_UINT64_C(0x0fc19dc68b8cd5b5), SHA_UINT64_C(0x240ca1cc77ac9c65),
-	SHA_UINT64_C(0x2de92c6f592b0275), SHA_UINT64_C(0x4a7484aa6ea6e483),
-	SHA_UINT64_C(0x5cb0a9dcbd41fbd4), SHA_UINT64_C(0x76f988da831153b5),
-	SHA_UINT64_C(0x983e5152ee66dfab), SHA_UINT64_C(0xa831c66d2db43210),
-	SHA_UINT64_C(0xb00327c898fb213f), SHA_UINT64_C(0xbf597fc7beef0ee4),
-	SHA_UINT64_C(0xc6e00bf33da88fc2), SHA_UINT64_C(0xd5a79147930aa725),
-	SHA_UINT64_C(0x06ca6351e003826f), SHA_UINT64_C(0x142929670a0e6e70),
-	SHA_UINT64_C(0x27b70a8546d22ffc), SHA_UINT64_C(0x2e1b21385c26c926),
-	SHA_UINT64_C(0x4d2c6dfc5ac42aed), SHA_UINT64_C(0x53380d139d95b3df),
-	SHA_UINT64_C(0x650a73548baf63de), SHA_UINT64_C(0x766a0abb3c77b2a8),
-	SHA_UINT64_C(0x81c2c92e47edaee6), SHA_UINT64_C(0x92722c851482353b),
-	SHA_UINT64_C(0xa2bfe8a14cf10364), SHA_UINT64_C(0xa81a664bbc423001),
-	SHA_UINT64_C(0xc24b8b70d0f89791), SHA_UINT64_C(0xc76c51a30654be30),
-	SHA_UINT64_C(0xd192e819d6ef5218), SHA_UINT64_C(0xd69906245565a910),
-	SHA_UINT64_C(0xf40e35855771202a), SHA_UINT64_C(0x106aa07032bbd1b8),
-	SHA_UINT64_C(0x19a4c116b8d2d0c8), SHA_UINT64_C(0x1e376c085141ab53),
-	SHA_UINT64_C(0x2748774cdf8eeb99), SHA_UINT64_C(0x34b0bcb5e19b48a8),
-	SHA_UINT64_C(0x391c0cb3c5c95a63), SHA_UINT64_C(0x4ed8aa4ae3418acb),
-	SHA_UINT64_C(0x5b9cca4f7763e373), SHA_UINT64_C(0x682e6ff3d6b2b8a3),
-	SHA_UINT64_C(0x748f82ee5defb2fc), SHA_UINT64_C(0x78a5636f43172f60),
-	SHA_UINT64_C(0x84c87814a1f0ab72), SHA_UINT64_C(0x8cc702081a6439ec),
-	SHA_UINT64_C(0x90befffa23631e28), SHA_UINT64_C(0xa4506cebde82bde9),
-	SHA_UINT64_C(0xbef9a3f7b2c67915), SHA_UINT64_C(0xc67178f2e372532b),
-	SHA_UINT64_C(0xca273eceea26619c), SHA_UINT64_C(0xd186b8c721c0c207),
-	SHA_UINT64_C(0xeada7dd6cde0eb1e), SHA_UINT64_C(0xf57d4f7fee6ed178),
-	SHA_UINT64_C(0x06f067aa72176fba), SHA_UINT64_C(0x0a637dc5a2c898a6),
-	SHA_UINT64_C(0x113f9804bef90dae), SHA_UINT64_C(0x1b710b35131c471b),
-	SHA_UINT64_C(0x28db77f523047d84), SHA_UINT64_C(0x32caab7b40c72493),
-	SHA_UINT64_C(0x3c9ebe0a15c9bebc), SHA_UINT64_C(0x431d67c49c100d4c),
-	SHA_UINT64_C(0x4cc5d4becb3e42b6), SHA_UINT64_C(0x597f299cfc657e2a),
-	SHA_UINT64_C(0x5fcb6fab3ad6faec), SHA_UINT64_C(0x6c44198c4a475817)
-};
-
-/* Initial hash value H for SHA-384 */
-static const sha_word64 sha384_initial_hash_value[8] = {
-	SHA_UINT64_C(0xcbbb9d5dc1059ed8),
-	SHA_UINT64_C(0x629a292a367cd507),
-	SHA_UINT64_C(0x9159015a3070dd17),
-	SHA_UINT64_C(0x152fecd8f70e5939),
-	SHA_UINT64_C(0x67332667ffc00b31),
-	SHA_UINT64_C(0x8eb44a8768581511),
-	SHA_UINT64_C(0xdb0c2e0d64f98fa7),
-	SHA_UINT64_C(0x47b5481dbefa4fa4)
-};
-
-/* Initial hash value H for SHA-512 */
-static const sha_word64 sha512_initial_hash_value[8] = {
-	SHA_UINT64_C(0x6a09e667f3bcc908),
-	SHA_UINT64_C(0xbb67ae8584caa73b),
-	SHA_UINT64_C(0x3c6ef372fe94f82b),
-	SHA_UINT64_C(0xa54ff53a5f1d36f1),
-	SHA_UINT64_C(0x510e527fade682d1),
-	SHA_UINT64_C(0x9b05688c2b3e6c1f),
-	SHA_UINT64_C(0x1f83d9abfb41bd6b),
-	SHA_UINT64_C(0x5be0cd19137e2179)
-};
-
-/*
- * Constant used by SHA224/256/384/512_End() functions for converting the
- * digest to a readable hexadecimal character string:
- */
-static const char *sha_hex_digits = "0123456789abcdef";
-
-
-/*** SHA-1: ***********************************************************/
-void SHA1_Init(SHA_CTX* context) {
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	MEMCPY_BCOPY(context->s1.state, sha1_initial_hash_value, sizeof(sha_word32) * 5);
-	MEMSET_BZERO(context->s1.buffer, 64);
-	context->s1.bitcount = 0;
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* Unrolled SHA-1 round macros: */
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-
-#define ROUND1_0_TO_15(a,b,c,d,e)				\
-	REVERSE32(*data++, W1[j]);				\
-	(e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) +	\
-	     K1_0_TO_19 + W1[j];	\
-	(b) = ROTL32(30, (b));		\
-	j++;
-
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND1_0_TO_15(a,b,c,d,e)				\
-	(e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) +	\
-	     K1_0_TO_19 + ( W1[j] = *data++ );		\
-	(b) = ROTL32(30, (b));	\
-	j++;
-
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND1_16_TO_19(a,b,c,d,e)	\
-	T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];	\
-	(e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) );	\
-	(b) = ROTL32(30, b);	\
-	j++;
-
-#define ROUND1_20_TO_39(a,b,c,d,e)	\
-	T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];	\
-	(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) );	\
-	(b) = ROTL32(30, b);	\
-	j++;
-
-#define ROUND1_40_TO_59(a,b,c,d,e)	\
-	T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];	\
-	(e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) );	\
-	(b) = ROTL32(30, b);	\
-	j++;
-
-#define ROUND1_60_TO_79(a,b,c,d,e)	\
-	T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];	\
-	(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) );	\
-	(b) = ROTL32(30, b);	\
-	j++;
-
-void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
-	sha_word32	a, b, c, d, e;
-	sha_word32	T1, *W1;
-	int		j;
-
-	W1 = (sha_word32*)context->s1.buffer;
-
-	/* Initialize registers with the prev. intermediate value */
-	a = context->s1.state[0];
-	b = context->s1.state[1];
-	c = context->s1.state[2];
-	d = context->s1.state[3];
-	e = context->s1.state[4];
-
-	j = 0;
-
-	/* Rounds 0 to 15 unrolled: */
-	ROUND1_0_TO_15(a,b,c,d,e);
-	ROUND1_0_TO_15(e,a,b,c,d);
-	ROUND1_0_TO_15(d,e,a,b,c);
-	ROUND1_0_TO_15(c,d,e,a,b);
-	ROUND1_0_TO_15(b,c,d,e,a);
-	ROUND1_0_TO_15(a,b,c,d,e);
-	ROUND1_0_TO_15(e,a,b,c,d);
-	ROUND1_0_TO_15(d,e,a,b,c);
-	ROUND1_0_TO_15(c,d,e,a,b);
-	ROUND1_0_TO_15(b,c,d,e,a);
-	ROUND1_0_TO_15(a,b,c,d,e);
-	ROUND1_0_TO_15(e,a,b,c,d);
-	ROUND1_0_TO_15(d,e,a,b,c);
-	ROUND1_0_TO_15(c,d,e,a,b);
-	ROUND1_0_TO_15(b,c,d,e,a);
-	ROUND1_0_TO_15(a,b,c,d,e);
-
-	/* Rounds 16 to 19 unrolled: */
-	ROUND1_16_TO_19(e,a,b,c,d);
-	ROUND1_16_TO_19(d,e,a,b,c);
-	ROUND1_16_TO_19(c,d,e,a,b);
-	ROUND1_16_TO_19(b,c,d,e,a);
-
-	/* Rounds 20 to 39 unrolled: */
-	ROUND1_20_TO_39(a,b,c,d,e);
-	ROUND1_20_TO_39(e,a,b,c,d);
-	ROUND1_20_TO_39(d,e,a,b,c);
-	ROUND1_20_TO_39(c,d,e,a,b);
-	ROUND1_20_TO_39(b,c,d,e,a);
-	ROUND1_20_TO_39(a,b,c,d,e);
-	ROUND1_20_TO_39(e,a,b,c,d);
-	ROUND1_20_TO_39(d,e,a,b,c);
-	ROUND1_20_TO_39(c,d,e,a,b);
-	ROUND1_20_TO_39(b,c,d,e,a);
-	ROUND1_20_TO_39(a,b,c,d,e);
-	ROUND1_20_TO_39(e,a,b,c,d);
-	ROUND1_20_TO_39(d,e,a,b,c);
-	ROUND1_20_TO_39(c,d,e,a,b);
-	ROUND1_20_TO_39(b,c,d,e,a);
-	ROUND1_20_TO_39(a,b,c,d,e);
-	ROUND1_20_TO_39(e,a,b,c,d);
-	ROUND1_20_TO_39(d,e,a,b,c);
-	ROUND1_20_TO_39(c,d,e,a,b);
-	ROUND1_20_TO_39(b,c,d,e,a);
-
-	/* Rounds 40 to 59 unrolled: */
-	ROUND1_40_TO_59(a,b,c,d,e);
-	ROUND1_40_TO_59(e,a,b,c,d);
-	ROUND1_40_TO_59(d,e,a,b,c);
-	ROUND1_40_TO_59(c,d,e,a,b);
-	ROUND1_40_TO_59(b,c,d,e,a);
-	ROUND1_40_TO_59(a,b,c,d,e);
-	ROUND1_40_TO_59(e,a,b,c,d);
-	ROUND1_40_TO_59(d,e,a,b,c);
-	ROUND1_40_TO_59(c,d,e,a,b);
-	ROUND1_40_TO_59(b,c,d,e,a);
-	ROUND1_40_TO_59(a,b,c,d,e);
-	ROUND1_40_TO_59(e,a,b,c,d);
-	ROUND1_40_TO_59(d,e,a,b,c);
-	ROUND1_40_TO_59(c,d,e,a,b);
-	ROUND1_40_TO_59(b,c,d,e,a);
-	ROUND1_40_TO_59(a,b,c,d,e);
-	ROUND1_40_TO_59(e,a,b,c,d);
-	ROUND1_40_TO_59(d,e,a,b,c);
-	ROUND1_40_TO_59(c,d,e,a,b);
-	ROUND1_40_TO_59(b,c,d,e,a);
-
-	/* Rounds 60 to 79 unrolled: */
-	ROUND1_60_TO_79(a,b,c,d,e);
-	ROUND1_60_TO_79(e,a,b,c,d);
-	ROUND1_60_TO_79(d,e,a,b,c);
-	ROUND1_60_TO_79(c,d,e,a,b);
-	ROUND1_60_TO_79(b,c,d,e,a);
-	ROUND1_60_TO_79(a,b,c,d,e);
-	ROUND1_60_TO_79(e,a,b,c,d);
-	ROUND1_60_TO_79(d,e,a,b,c);
-	ROUND1_60_TO_79(c,d,e,a,b);
-	ROUND1_60_TO_79(b,c,d,e,a);
-	ROUND1_60_TO_79(a,b,c,d,e);
-	ROUND1_60_TO_79(e,a,b,c,d);
-	ROUND1_60_TO_79(d,e,a,b,c);
-	ROUND1_60_TO_79(c,d,e,a,b);
-	ROUND1_60_TO_79(b,c,d,e,a);
-	ROUND1_60_TO_79(a,b,c,d,e);
-	ROUND1_60_TO_79(e,a,b,c,d);
-	ROUND1_60_TO_79(d,e,a,b,c);
-	ROUND1_60_TO_79(c,d,e,a,b);
-	ROUND1_60_TO_79(b,c,d,e,a);
-
-	/* Compute the current intermediate hash value */
-	context->s1.state[0] += a;
-	context->s1.state[1] += b;
-	context->s1.state[2] += c;
-	context->s1.state[3] += d;
-	context->s1.state[4] += e;
-
-	/* Clean up */
-	a = b = c = d = e = T1 = 0;
-}
-
-#else  /* SHA2_UNROLL_TRANSFORM */
-
-void SHA1_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
-	sha_word32	a, b, c, d, e;
-	sha_word32	T1, *W1;
-	int		j;
-
-	W1 = (sha_word32*)context->s1.buffer;
-
-	/* Initialize registers with the prev. intermediate value */
-	a = context->s1.state[0];
-	b = context->s1.state[1];
-	c = context->s1.state[2];
-	d = context->s1.state[3];
-	e = context->s1.state[4];
-	j = 0;
-	do {
-#if BYTE_ORDER == LITTLE_ENDIAN
-		T1 = data[j];
-		/* Copy data while converting to host byte order */
-		REVERSE32(*data++, W1[j]);
-		T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + W1[j];
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
-		T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++);
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-		e = d;
-		d = c;
-		c = ROTL32(30, b);
-		b = a;
-		a = T1;
-		j++;
-	} while (j < 16);
-
-	do {
-		T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
-		T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1));
-		e = d;
-		d = c;
-		c = ROTL32(30, b);
-		b = a;
-		a = T1;
-		j++;
-	} while (j < 20);
-
-	do {
-		T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
-		T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1));
-		e = d;
-		d = c;
-		c = ROTL32(30, b);
-		b = a;
-		a = T1;
-		j++;
-	} while (j < 40);
-
-	do {
-		T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
-		T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1));
-		e = d;
-		d = c;
-		c = ROTL32(30, b);
-		b = a;
-		a = T1;
-		j++;
-	} while (j < 60);
-
-	do {
-		T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
-		T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1));
-		e = d;
-		d = c;
-		c = ROTL32(30, b);
-		b = a;
-		a = T1;
-		j++;
-	} while (j < 80);
-
-
-	/* Compute the current intermediate hash value */
-	context->s1.state[0] += a;
-	context->s1.state[1] += b;
-	context->s1.state[2] += c;
-	context->s1.state[3] += d;
-	context->s1.state[4] += e;
-
-	/* Clean up */
-	a = b = c = d = e = T1 = 0;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-void SHA1_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
-	unsigned int	freespace, usedspace;
-	if (len == 0) {
-		/* Calling with no data is valid - we do nothing */
-		return;
-	}
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
-
-	usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64);
-	if (usedspace > 0) {
-		/* Calculate how much free space is available in the buffer */
-		freespace = 64 - usedspace;
-
-		if (len >= freespace) {
-			/* Fill the buffer completely and process it */
-			MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, freespace);
-			context->s1.bitcount += freespace << 3;
-			len -= freespace;
-			data += freespace;
-			SHA1_Internal_Transform(context, (const sha_word32*)context->s1.buffer);
-		} else {
-			/* The buffer is not yet full */
-			MEMCPY_BCOPY(&context->s1.buffer[usedspace], data, len);
-			context->s1.bitcount += len << 3;
-			/* Clean up: */
-			usedspace = freespace = 0;
-			return;
-		}
-	}
-	while (len >= 64) {
-		/* Process as many complete blocks as we can */
-		SHA1_Internal_Transform(context, (const sha_word32*)data);
-		context->s1.bitcount += 512;
-		len -= 64;
-		data += 64;
-	}
-	if (len > 0) {
-		/* There's left-overs, so save 'em */
-		MEMCPY_BCOPY(context->s1.buffer, data, len);
-		context->s1.bitcount += len << 3;
-	}
-	/* Clean up: */
-	usedspace = freespace = 0;
-}
-
-void SHA1_Final(sha_byte digest[], SHA_CTX* context) {
-	sha_word32	*d = (sha_word32*)digest;
-	unsigned int	usedspace;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	if (digest == (sha_byte*)0) {
-		/*
-		 * No digest buffer, so we can do nothing
-		 * except clean up and go home
-		 */
-		MEMSET_BZERO(context, sizeof(*context));
-		return;
-	}
-
-	usedspace = (unsigned int)((context->s1.bitcount >> 3) % 64);
-	if (usedspace == 0) {
-		/* Set-up for the last transform: */
-		MEMSET_BZERO(context->s1.buffer, 56);
-
-		/* Begin padding with a 1 bit: */
-		*context->s1.buffer = 0x80;
-	} else {
-		/* Begin padding with a 1 bit: */
-		context->s1.buffer[usedspace++] = 0x80;
-
-		if (usedspace <= 56) {
-			/* Set-up for the last transform: */
-			MEMSET_BZERO(&context->s1.buffer[usedspace], 56 - usedspace);
-		} else {
-			if (usedspace < 64) {
-				MEMSET_BZERO(&context->s1.buffer[usedspace], 64 - usedspace);
-			}
-			/* Do second-to-last transform: */
-			SHA1_Internal_Transform(context, (const sha_word32*)context->s1.buffer);
-
-			/* And set-up for the last transform: */
-			MEMSET_BZERO(context->s1.buffer, 56);
-		}
-		/* Clean up: */
-		usedspace = 0;
-	}
-	/* Set the bit count: */
-#if BYTE_ORDER == LITTLE_ENDIAN
-	/* Convert FROM host byte order */
-	REVERSE64(context->s1.bitcount,context->s1.bitcount);
-#endif
-	MEMCPY_BCOPY(&context->s1.buffer[56], &context->s1.bitcount,
-		     sizeof(sha_word64));
-
-	/* Final transform: */
-	SHA1_Internal_Transform(context, (const sha_word32*)context->s1.buffer);
-
-	/* Save the hash data for output: */
-#if BYTE_ORDER == LITTLE_ENDIAN
-	{
-		/* Convert TO host byte order */
-		int	j;
-		for (j = 0; j < (SHA1_DIGEST_LENGTH >> 2); j++) {
-			REVERSE32(context->s1.state[j],context->s1.state[j]);
-			*d++ = context->s1.state[j];
-		}
-	}
-#else
-	MEMCPY_BCOPY(d, context->s1.state, SHA1_DIGEST_LENGTH);
-#endif
-
-	/* Clean up: */
-	MEMSET_BZERO(context, sizeof(*context));
-}
-
-char *SHA1_End(SHA_CTX* context, char buffer[]) {
-	sha_byte	digest[SHA1_DIGEST_LENGTH], *d = digest;
-	int		i;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	if (buffer != (char*)0) {
-		SHA1_Final(digest, context);
-
-		for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
-			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
-			*buffer++ = sha_hex_digits[*d & 0x0f];
-			d++;
-		}
-		*buffer = (char)0;
-	} else {
-		MEMSET_BZERO(context, sizeof(*context));
-	}
-	MEMSET_BZERO(digest, SHA1_DIGEST_LENGTH);
-	return buffer;
-}
-
-char* SHA1_Data(const sha_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) {
-	SHA_CTX	context;
-
-	SHA1_Init(&context);
-	SHA1_Update(&context, data, len);
-	return SHA1_End(&context, digest);
-}
-
-
-/*** SHA-256: *********************************************************/
-void SHA256_Internal_Init(SHA_CTX* context, const sha_word32* ihv) {
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	MEMCPY_BCOPY(context->s256.state, ihv, sizeof(sha_word32) * 8);
-	MEMSET_BZERO(context->s256.buffer, 64);
-	context->s256.bitcount = 0;
-}
-
-void SHA256_Init(SHA_CTX* context) {
-	SHA256_Internal_Init(context, sha256_initial_hash_value);
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* Unrolled SHA-256 round macros: */
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-
-#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
-	REVERSE32(*data++, W256[j]); \
-	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
-	     K256[j] + W256[j]; \
-	(d) += T1; \
-	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
-	j++
-
-
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
-	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
-	     K256[j] + (W256[j] = *data++); \
-	(d) += T1; \
-	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
-	j++
-
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND256(a,b,c,d,e,f,g,h)	\
-	s0 = W256[(j+1)&0x0f]; \
-	s0 = sigma0_256(s0); \
-	s1 = W256[(j+14)&0x0f]; \
-	s1 = sigma1_256(s1); \
-	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
-	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
-	(d) += T1; \
-	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
-	j++
-
-void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
-	sha_word32	a, b, c, d, e, f, g, h, s0, s1;
-	sha_word32	T1, *W256;
-	int		j;
-
-	W256 = (sha_word32*)context->s256.buffer;
-
-	/* Initialize registers with the prev. intermediate value */
-	a = context->s256.state[0];
-	b = context->s256.state[1];
-	c = context->s256.state[2];
-	d = context->s256.state[3];
-	e = context->s256.state[4];
-	f = context->s256.state[5];
-	g = context->s256.state[6];
-	h = context->s256.state[7];
-
-	j = 0;
-	do {
-		/* Rounds 0 to 15 (unrolled): */
-		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
-		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
-		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
-		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
-		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
-		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
-		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
-		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
-	} while (j < 16);
-
-	/* Now for the remaining rounds to 64: */
-	do {
-		ROUND256(a,b,c,d,e,f,g,h);
-		ROUND256(h,a,b,c,d,e,f,g);
-		ROUND256(g,h,a,b,c,d,e,f);
-		ROUND256(f,g,h,a,b,c,d,e);
-		ROUND256(e,f,g,h,a,b,c,d);
-		ROUND256(d,e,f,g,h,a,b,c);
-		ROUND256(c,d,e,f,g,h,a,b);
-		ROUND256(b,c,d,e,f,g,h,a);
-	} while (j < 64);
-
-	/* Compute the current intermediate hash value */
-	context->s256.state[0] += a;
-	context->s256.state[1] += b;
-	context->s256.state[2] += c;
-	context->s256.state[3] += d;
-	context->s256.state[4] += e;
-	context->s256.state[5] += f;
-	context->s256.state[6] += g;
-	context->s256.state[7] += h;
-
-	/* Clean up */
-	a = b = c = d = e = f = g = h = T1 = 0;
-}
-
-#else /* SHA2_UNROLL_TRANSFORM */
-
-void SHA256_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
-	sha_word32	a, b, c, d, e, f, g, h, s0, s1;
-	sha_word32	T1, T2, *W256;
-	int		j;
-
-	W256 = (sha_word32*)context->s256.buffer;
-
-	/* Initialize registers with the prev. intermediate value */
-	a = context->s256.state[0];
-	b = context->s256.state[1];
-	c = context->s256.state[2];
-	d = context->s256.state[3];
-	e = context->s256.state[4];
-	f = context->s256.state[5];
-	g = context->s256.state[6];
-	h = context->s256.state[7];
-
-	j = 0;
-	do {
-#if BYTE_ORDER == LITTLE_ENDIAN
-		/* Copy data while converting to host byte order */
-		REVERSE32(*data++,W256[j]);
-		/* Apply the SHA-256 compression function to update a..h */
-		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
-		/* Apply the SHA-256 compression function to update a..h with copy */
-		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-		T2 = Sigma0_256(a) + Maj(a, b, c);
-		h = g;
-		g = f;
-		f = e;
-		e = d + T1;
-		d = c;
-		c = b;
-		b = a;
-		a = T1 + T2;
-
-		j++;
-	} while (j < 16);
-
-	do {
-		/* Part of the message block expansion: */
-		s0 = W256[(j+1)&0x0f];
-		s0 = sigma0_256(s0);
-		s1 = W256[(j+14)&0x0f];
-		s1 = sigma1_256(s1);
-
-		/* Apply the SHA-256 compression function to update a..h */
-		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
-		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
-		T2 = Sigma0_256(a) + Maj(a, b, c);
-		h = g;
-		g = f;
-		f = e;
-		e = d + T1;
-		d = c;
-		c = b;
-		b = a;
-		a = T1 + T2;
-
-		j++;
-	} while (j < 64);
-
-	/* Compute the current intermediate hash value */
-	context->s256.state[0] += a;
-	context->s256.state[1] += b;
-	context->s256.state[2] += c;
-	context->s256.state[3] += d;
-	context->s256.state[4] += e;
-	context->s256.state[5] += f;
-	context->s256.state[6] += g;
-	context->s256.state[7] += h;
-
-	/* Clean up */
-	a = b = c = d = e = f = g = h = T1 = T2 = 0;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-void SHA256_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
-	unsigned int	freespace, usedspace;
-
-	if (len == 0) {
-		/* Calling with no data is valid - we do nothing */
-		return;
-	}
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
-
-	usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64);
-	if (usedspace > 0) {
-		/* Calculate how much free space is available in the buffer */
-		freespace = 64 - usedspace;
-
-		if (len >= freespace) {
-			/* Fill the buffer completely and process it */
-			MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, freespace);
-			context->s256.bitcount += freespace << 3;
-			len -= freespace;
-			data += freespace;
-			SHA256_Internal_Transform(context, (const sha_word32*)context->s256.buffer);
-		} else {
-			/* The buffer is not yet full */
-			MEMCPY_BCOPY(&context->s256.buffer[usedspace], data, len);
-			context->s256.bitcount += len << 3;
-			/* Clean up: */
-			usedspace = freespace = 0;
-			return;
-		}
-	}
-	while (len >= 64) {
-		/* Process as many complete blocks as we can */
-		SHA256_Internal_Transform(context, (const sha_word32*)data);
-		context->s256.bitcount += 512;
-		len -= 64;
-		data += 64;
-	}
-	if (len > 0) {
-		/* There's left-overs, so save 'em */
-		MEMCPY_BCOPY(context->s256.buffer, data, len);
-		context->s256.bitcount += len << 3;
-	}
-	/* Clean up: */
-	usedspace = freespace = 0;
-}
-
-void SHA256_Internal_Last(SHA_CTX* context) {
-	unsigned int	usedspace;
-
-	usedspace = (unsigned int)((context->s256.bitcount >> 3) % 64);
-#if BYTE_ORDER == LITTLE_ENDIAN
-	/* Convert FROM host byte order */
-	REVERSE64(context->s256.bitcount,context->s256.bitcount);
-#endif
-	if (usedspace > 0) {
-		/* Begin padding with a 1 bit: */
-		context->s256.buffer[usedspace++] = 0x80;
-
-		if (usedspace <= 56) {
-			/* Set-up for the last transform: */
-			MEMSET_BZERO(&context->s256.buffer[usedspace], 56 - usedspace);
-		} else {
-			if (usedspace < 64) {
-				MEMSET_BZERO(&context->s256.buffer[usedspace], 64 - usedspace);
-			}
-			/* Do second-to-last transform: */
-			SHA256_Internal_Transform(context, (const sha_word32*)context->s256.buffer);
-
-			/* And set-up for the last transform: */
-			MEMSET_BZERO(context->s256.buffer, 56);
-		}
-		/* Clean up: */
-		usedspace = 0;
-	} else {
-		/* Set-up for the last transform: */
-		MEMSET_BZERO(context->s256.buffer, 56);
-
-		/* Begin padding with a 1 bit: */
-		*context->s256.buffer = 0x80;
-	}
-	/* Set the bit count: */
-	MEMCPY_BCOPY(&context->s256.buffer[56], &context->s256.bitcount,
-		     sizeof(sha_word64));
-
-	/* Final transform: */
-	SHA256_Internal_Transform(context, (const sha_word32*)context->s256.buffer);
-}
-
-void SHA256_Final(sha_byte digest[], SHA_CTX* context) {
-	sha_word32	*d = (sha_word32*)digest;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	/* If no digest buffer is passed, we don't bother doing this: */
-	if (digest != (sha_byte*)0) {
-		SHA256_Internal_Last(context);
-
-		/* Save the hash data for output: */
-#if BYTE_ORDER == LITTLE_ENDIAN
-		{
-			/* Convert TO host byte order */
-			int	j;
-			for (j = 0; j < (SHA256_DIGEST_LENGTH >> 2); j++) {
-				REVERSE32(context->s256.state[j],context->s256.state[j]);
-				*d++ = context->s256.state[j];
-			}
-		}
-#else
-		MEMCPY_BCOPY(d, context->s256.state, SHA256_DIGEST_LENGTH);
-#endif
-	}
-
-	/* Clean up state data: */
-	MEMSET_BZERO(context, sizeof(*context));
-}
-
-char *SHA256_End(SHA_CTX* context, char buffer[]) {
-	sha_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
-	int		i;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	if (buffer != (char*)0) {
-		SHA256_Final(digest, context);
-
-		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
-			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
-			*buffer++ = sha_hex_digits[*d & 0x0f];
-			d++;
-		}
-		*buffer = (char)0;
-	} else {
-		MEMSET_BZERO(context, sizeof(*context));
-	}
-	MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
-	return buffer;
-}
-
-char* SHA256_Data(const sha_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
-	SHA_CTX	context;
-
-	SHA256_Init(&context);
-	SHA256_Update(&context, data, len);
-	return SHA256_End(&context, digest);
-}
-
-
-/*** SHA-224: *********************************************************/
-void SHA224_Init(SHA_CTX* context) {
-	SHA256_Internal_Init(context, sha224_initial_hash_value);
-}
-
-void SHA224_Internal_Transform(SHA_CTX* context, const sha_word32* data) {
-	SHA256_Internal_Transform(context, data);
-}
-
-void SHA224_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
-	SHA256_Update(context, data, len);
-}
-
-void SHA224_Final(sha_byte digest[], SHA_CTX* context) {
-	sha_word32	*d = (sha_word32*)digest;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	/* If no digest buffer is passed, we don't bother doing this: */
-	if (digest != (sha_byte*)0) {
-		SHA256_Internal_Last(context);
-
-		/* Save the hash data for output: */
-#if BYTE_ORDER == LITTLE_ENDIAN
-		{
-			/* Convert TO host byte order */
-			int	j;
-			for (j = 0; j < (SHA224_DIGEST_LENGTH >> 2); j++) {
-				REVERSE32(context->s256.state[j],context->s256.state[j]);
-				*d++ = context->s256.state[j];
-			}
-		}
-#else
-		MEMCPY_BCOPY(d, context->s256.state, SHA224_DIGEST_LENGTH);
-#endif
-	}
-
-	/* Clean up state data: */
-	MEMSET_BZERO(context, sizeof(*context));
-}
-
-char *SHA224_End(SHA_CTX* context, char buffer[]) {
-	sha_byte	digest[SHA224_DIGEST_LENGTH], *d = digest;
-	int		i;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	if (buffer != (char*)0) {
-		SHA224_Final(digest, context);
-
-		for (i = 0; i < SHA224_DIGEST_LENGTH; i++) {
-			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
-			*buffer++ = sha_hex_digits[*d & 0x0f];
-			d++;
-		}
-		*buffer = (char)0;
-	} else {
-		MEMSET_BZERO(context, sizeof(*context));
-	}
-	MEMSET_BZERO(digest, SHA224_DIGEST_LENGTH);
-	return buffer;
-}
-
-char* SHA224_Data(const sha_byte* data, size_t len, char digest[SHA224_DIGEST_STRING_LENGTH]) {
-	SHA_CTX	context;
-
-	SHA224_Init(&context);
-	SHA224_Update(&context, data, len);
-	return SHA224_End(&context, digest);
-}
-
-
-/*** SHA-512: *********************************************************/
-void SHA512_Internal_Init(SHA_CTX* context, const sha_word64* ihv) {
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	MEMCPY_BCOPY(context->s512.state, ihv, sizeof(sha_word64) * 8);
-	MEMSET_BZERO(context->s512.buffer, 128);
-	context->s512.bitcount[0] = context->s512.bitcount[1] =  0;
-}
-
-void SHA512_Init(SHA_CTX* context) {
-	SHA512_Internal_Init(context, sha512_initial_hash_value);
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* Unrolled SHA-512 round macros: */
-#if BYTE_ORDER == LITTLE_ENDIAN
-
-#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
-	REVERSE64(*data++, W512[j]); \
-	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
-	     K512[j] + W512[j]; \
-	(d) += T1, \
-	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
-	j++
-
-
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
-	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
-	     K512[j] + (W512[j] = *data++); \
-	(d) += T1; \
-	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
-	j++
-
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND512(a,b,c,d,e,f,g,h)	\
-	s0 = W512[(j+1)&0x0f]; \
-	s0 = sigma0_512(s0); \
-	s1 = W512[(j+14)&0x0f]; \
-	s1 = sigma1_512(s1); \
-	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
-	     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
-	(d) += T1; \
-	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
-	j++
-
-void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
-	sha_word64	a, b, c, d, e, f, g, h, s0, s1;
-	sha_word64	T1, *W512 = (sha_word64*)context->s512.buffer;
-	int		j;
-
-	/* Initialize registers with the prev. intermediate value */
-	a = context->s512.state[0];
-	b = context->s512.state[1];
-	c = context->s512.state[2];
-	d = context->s512.state[3];
-	e = context->s512.state[4];
-	f = context->s512.state[5];
-	g = context->s512.state[6];
-	h = context->s512.state[7];
-
-	j = 0;
-	do {
-		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
-		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
-		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
-		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
-		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
-		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
-		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
-		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
-	} while (j < 16);
-
-	/* Now for the remaining rounds up to 79: */
-	do {
-		ROUND512(a,b,c,d,e,f,g,h);
-		ROUND512(h,a,b,c,d,e,f,g);
-		ROUND512(g,h,a,b,c,d,e,f);
-		ROUND512(f,g,h,a,b,c,d,e);
-		ROUND512(e,f,g,h,a,b,c,d);
-		ROUND512(d,e,f,g,h,a,b,c);
-		ROUND512(c,d,e,f,g,h,a,b);
-		ROUND512(b,c,d,e,f,g,h,a);
-	} while (j < 80);
-
-	/* Compute the current intermediate hash value */
-	context->s512.state[0] += a;
-	context->s512.state[1] += b;
-	context->s512.state[2] += c;
-	context->s512.state[3] += d;
-	context->s512.state[4] += e;
-	context->s512.state[5] += f;
-	context->s512.state[6] += g;
-	context->s512.state[7] += h;
-
-	/* Clean up */
-	a = b = c = d = e = f = g = h = T1 = 0;
-}
-
-#else /* SHA2_UNROLL_TRANSFORM */
-
-void SHA512_Internal_Transform(SHA_CTX* context, const sha_word64* data) {
-	sha_word64	a, b, c, d, e, f, g, h, s0, s1;
-	sha_word64	T1, T2, *W512 = (sha_word64*)context->s512.buffer;
-	int		j;
-
-	/* Initialize registers with the prev. intermediate value */
-	a = context->s512.state[0];
-	b = context->s512.state[1];
-	c = context->s512.state[2];
-	d = context->s512.state[3];
-	e = context->s512.state[4];
-	f = context->s512.state[5];
-	g = context->s512.state[6];
-	h = context->s512.state[7];
-
-	j = 0;
-	do {
-#if BYTE_ORDER == LITTLE_ENDIAN
-		/* Convert TO host byte order */
-		REVERSE64(*data++, W512[j]);
-		/* Apply the SHA-512 compression function to update a..h */
-		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
-		/* Apply the SHA-512 compression function to update a..h with copy */
-		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-		T2 = Sigma0_512(a) + Maj(a, b, c);
-		h = g;
-		g = f;
-		f = e;
-		e = d + T1;
-		d = c;
-		c = b;
-		b = a;
-		a = T1 + T2;
-
-		j++;
-	} while (j < 16);
-
-	do {
-		/* Part of the message block expansion: */
-		s0 = W512[(j+1)&0x0f];
-		s0 = sigma0_512(s0);
-		s1 = W512[(j+14)&0x0f];
-		s1 =  sigma1_512(s1);
-
-		/* Apply the SHA-512 compression function to update a..h */
-		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
-		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
-		T2 = Sigma0_512(a) + Maj(a, b, c);
-		h = g;
-		g = f;
-		f = e;
-		e = d + T1;
-		d = c;
-		c = b;
-		b = a;
-		a = T1 + T2;
-
-		j++;
-	} while (j < 80);
-
-	/* Compute the current intermediate hash value */
-	context->s512.state[0] += a;
-	context->s512.state[1] += b;
-	context->s512.state[2] += c;
-	context->s512.state[3] += d;
-	context->s512.state[4] += e;
-	context->s512.state[5] += f;
-	context->s512.state[6] += g;
-	context->s512.state[7] += h;
-
-	/* Clean up */
-	a = b = c = d = e = f = g = h = T1 = T2 = 0;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-void SHA512_Update(SHA_CTX* context, const sha_byte *data, size_t len) {
-	unsigned int	freespace, usedspace;
-
-	if (len == 0) {
-		/* Calling with no data is valid - we do nothing */
-		return;
-	}
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0 && data != (sha_byte*)0);
-
-	usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128);
-	if (usedspace > 0) {
-		/* Calculate how much free space is available in the buffer */
-		freespace = 128 - usedspace;
-
-		if (len >= freespace) {
-			/* Fill the buffer completely and process it */
-			MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, freespace);
-			ADDINC128(context->s512.bitcount, freespace << 3);
-			len -= freespace;
-			data += freespace;
-			SHA512_Internal_Transform(context, (const sha_word64*)context->s512.buffer);
-		} else {
-			/* The buffer is not yet full */
-			MEMCPY_BCOPY(&context->s512.buffer[usedspace], data, len);
-			ADDINC128(context->s512.bitcount, len << 3);
-			/* Clean up: */
-			usedspace = freespace = 0;
-			return;
-		}
-	}
-	while (len >= 128) {
-		/* Process as many complete blocks as we can */
-		SHA512_Internal_Transform(context, (const sha_word64*)data);
-		ADDINC128(context->s512.bitcount, 1024);
-		len -= 128;
-		data += 128;
-	}
-	if (len > 0) {
-		/* There's left-overs, so save 'em */
-		MEMCPY_BCOPY(context->s512.buffer, data, len);
-		ADDINC128(context->s512.bitcount, len << 3);
-	}
-	/* Clean up: */
-	usedspace = freespace = 0;
-}
-
-void SHA512_Internal_Last(SHA_CTX* context) {
-	unsigned int	usedspace;
-
-	usedspace = (unsigned int)((context->s512.bitcount[0] >> 3) % 128);
-#if BYTE_ORDER == LITTLE_ENDIAN
-	/* Convert FROM host byte order */
-	REVERSE64(context->s512.bitcount[0],context->s512.bitcount[0]);
-	REVERSE64(context->s512.bitcount[1],context->s512.bitcount[1]);
-#endif
-	if (usedspace > 0) {
-		/* Begin padding with a 1 bit: */
-		context->s512.buffer[usedspace++] = 0x80;
-
-		if (usedspace <= 112) {
-			/* Set-up for the last transform: */
-			MEMSET_BZERO(&context->s512.buffer[usedspace], 112 - usedspace);
-		} else {
-			if (usedspace < 128) {
-				MEMSET_BZERO(&context->s512.buffer[usedspace], 128 - usedspace);
-			}
-			/* Do second-to-last transform: */
-			SHA512_Internal_Transform(context, (const sha_word64*)context->s512.buffer);
-
-			/* And set-up for the last transform: */
-			MEMSET_BZERO(context->s512.buffer, 112);
-		}
-		/* Clean up: */
-		usedspace = 0;
-	} else {
-		/* Prepare for final transform: */
-		MEMSET_BZERO(context->s512.buffer, 112);
-
-		/* Begin padding with a 1 bit: */
-		*context->s512.buffer = 0x80;
-	}
-	/* Store the length of input data (in bits): */
-	MEMCPY_BCOPY(&context->s512.buffer[112], &context->s512.bitcount[1],
-		     sizeof(sha_word64));
-	MEMCPY_BCOPY(&context->s512.buffer[120], &context->s512.bitcount[0],
-		     sizeof(sha_word64));
-
-	/* Final transform: */
-	SHA512_Internal_Transform(context, (const sha_word64*)context->s512.buffer);
-}
-
-void SHA512_Final(sha_byte digest[], SHA_CTX* context) {
-	sha_word64	*d = (sha_word64*)digest;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	/* If no digest buffer is passed, we don't bother doing this: */
-	if (digest != (sha_byte*)0) {
-		SHA512_Internal_Last(context);
-
-		/* Save the hash data for output: */
-#if BYTE_ORDER == LITTLE_ENDIAN
-		{
-			/* Convert TO host byte order */
-			int	j;
-			for (j = 0; j < (SHA512_DIGEST_LENGTH >> 3); j++) {
-				REVERSE64(context->s512.state[j],context->s512.state[j]);
-				*d++ = context->s512.state[j];
-			}
-		}
-#else
-		MEMCPY_BCOPY(d, context->s512.state, SHA512_DIGEST_LENGTH);
-#endif
-	}
-
-	/* Zero out state data */
-	MEMSET_BZERO(context, sizeof(*context));
-}
-
-char *SHA512_End(SHA_CTX* context, char buffer[]) {
-	sha_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
-	int		i;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	if (buffer != (char*)0) {
-		SHA512_Final(digest, context);
-
-		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
-			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
-			*buffer++ = sha_hex_digits[*d & 0x0f];
-			d++;
-		}
-		*buffer = (char)0;
-	} else {
-		MEMSET_BZERO(context, sizeof(*context));
-	}
-	MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
-	return buffer;
-}
-
-char* SHA512_Data(const sha_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
-	SHA_CTX	context;
-
-	SHA512_Init(&context);
-	SHA512_Update(&context, data, len);
-	return SHA512_End(&context, digest);
-}
-
-
-/*** SHA-384: *********************************************************/
-void SHA384_Init(SHA_CTX* context) {
-	SHA512_Internal_Init(context, sha384_initial_hash_value);
-}
-
-void SHA384_Update(SHA_CTX* context, const sha_byte* data, size_t len) {
-	SHA512_Update(context, data, len);
-}
-
-void SHA384_Final(sha_byte digest[], SHA_CTX* context) {
-	sha_word64	*d = (sha_word64*)digest;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	/* If no digest buffer is passed, we don't bother doing this: */
-	if (digest != (sha_byte*)0) {
-		SHA512_Internal_Last(context);
-
-		/* Save the hash data for output: */
-#if BYTE_ORDER == LITTLE_ENDIAN
-		{
-			/* Convert TO host byte order */
-			int	j;
-			for (j = 0; j < (SHA384_DIGEST_LENGTH >> 3); j++) {
-				REVERSE64(context->s512.state[j],context->s512.state[j]);
-				*d++ = context->s512.state[j];
-			}
-		}
-#else
-		MEMCPY_BCOPY(d, context->s512.state, SHA384_DIGEST_LENGTH);
-#endif
-	}
-
-	/* Zero out state data */
-	MEMSET_BZERO(context, sizeof(*context));
-}
-
-char *SHA384_End(SHA_CTX* context, char buffer[]) {
-	sha_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
-	int		i;
-
-	/* Sanity check: */
-	assert(context != (SHA_CTX*)0);
-
-	if (buffer != (char*)0) {
-		SHA384_Final(digest, context);
-
-		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
-			*buffer++ = sha_hex_digits[(*d & 0xf0) >> 4];
-			*buffer++ = sha_hex_digits[*d & 0x0f];
-			d++;
-		}
-		*buffer = (char)0;
-	} else {
-		MEMSET_BZERO(context, sizeof(*context));
-	}
-	MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
-	return buffer;
-}
-
-char* SHA384_Data(const sha_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
-	SHA_CTX	context;
-
-	SHA384_Init(&context);
-	SHA384_Update(&context, data, len);
-	return SHA384_End(&context, digest);
-}
diff --git a/Source/cm_sha2.h b/Source/cm_sha2.h
deleted file mode 100644
index f1510318c1..0000000000
--- a/Source/cm_sha2.h
+++ /dev/null
@@ -1,140 +0,0 @@
-/*
- * FILE:    sha2.h
- * AUTHOR:  Aaron D. Gifford
- *          http://www.aarongifford.com/computers/sha.html
- *
- * Copyright (c) 2000-2003, Aaron D. Gifford
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the copyright holder nor the names of contributors
- *    may be used to endorse or promote products derived from this software
- *    without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * $Id: sha2.h,v 1.4 2004/01/07 19:06:18 adg Exp $
- */
-
-#ifndef __SHA2_H__
-#define __SHA2_H__
-
-#include "cm_sha2_mangle.h"
-
-/* CMake modification: use integer types from KWIML.  */
-#include <cm_kwiml.h>
-typedef KWIML_INT_uint8_t cm_sha2_uint8_t;
-typedef KWIML_INT_uint32_t cm_sha2_uint32_t;
-typedef KWIML_INT_uint64_t cm_sha2_uint64_t;
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-/*
- * Import u_intXX_t size_t type definitions from system headers.  You
- * may need to change this, or define these things yourself in this
- * file.
- */
-#include <sys/types.h>
-
-/*** SHA-224/256/384/512 Various Length Definitions *******************/
-
-/* Digest lengths for SHA-1/224/256/384/512 */
-#define   SHA1_DIGEST_LENGTH          20
-#define   SHA1_DIGEST_STRING_LENGTH  (SHA1_DIGEST_LENGTH   * 2 + 1)
-#define SHA224_DIGEST_LENGTH          28
-#define SHA224_DIGEST_STRING_LENGTH  (SHA224_DIGEST_LENGTH * 2 + 1)
-#define SHA256_DIGEST_LENGTH          32
-#define SHA256_DIGEST_STRING_LENGTH  (SHA256_DIGEST_LENGTH * 2 + 1)
-#define SHA384_DIGEST_LENGTH          48
-#define SHA384_DIGEST_STRING_LENGTH  (SHA384_DIGEST_LENGTH * 2 + 1)
-#define SHA512_DIGEST_LENGTH          64
-#define SHA512_DIGEST_STRING_LENGTH  (SHA512_DIGEST_LENGTH * 2 + 1)
-
-
-/*** SHA-224/256/384/512 Context Structures ***************************/
-
-typedef union _SHA_CTX {
-    /* SHA-1 uses this part of the union: */
-    struct {
-	cm_sha2_uint32_t state[5];
-	cm_sha2_uint64_t bitcount;
-	cm_sha2_uint8_t  buffer[64];
-    } s1;
-
-    /* SHA-224 and SHA-256 use this part of the union: */
-    struct {
-	cm_sha2_uint32_t state[8];
-	cm_sha2_uint64_t bitcount;
-	cm_sha2_uint8_t  buffer[64];
-    } s256;
-
-    /* SHA-384 and SHA-512 use this part of the union: */
-    struct {
-	cm_sha2_uint64_t state[8];
-	cm_sha2_uint64_t bitcount[2];
-	cm_sha2_uint8_t  buffer[128];
-    } s512;
-} SHA_CTX;
-
-/*** SHA-256/384/512 Function Prototypes ******************************/
-
-void SHA1_Init(SHA_CTX*);
-void SHA1_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t);
-void SHA1_Final(cm_sha2_uint8_t[SHA1_DIGEST_LENGTH], SHA_CTX*);
-char* SHA1_End(SHA_CTX*, char[SHA1_DIGEST_STRING_LENGTH]);
-char* SHA1_Data(const cm_sha2_uint8_t*, size_t,
-		char[SHA1_DIGEST_STRING_LENGTH]);
-
-void SHA224_Init(SHA_CTX*);
-void SHA224_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t);
-void SHA224_Final(cm_sha2_uint8_t[SHA224_DIGEST_LENGTH], SHA_CTX*);
-char* SHA224_End(SHA_CTX*, char[SHA224_DIGEST_STRING_LENGTH]);
-char* SHA224_Data(const cm_sha2_uint8_t*, size_t,
-		  char[SHA224_DIGEST_STRING_LENGTH]);
-
-void SHA256_Init(SHA_CTX*);
-void SHA256_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t);
-void SHA256_Final(cm_sha2_uint8_t[SHA256_DIGEST_LENGTH], SHA_CTX*);
-char* SHA256_End(SHA_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
-char* SHA256_Data(const cm_sha2_uint8_t*, size_t,
-		  char[SHA256_DIGEST_STRING_LENGTH]);
-
-void SHA384_Init(SHA_CTX*);
-void SHA384_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t);
-void SHA384_Final(cm_sha2_uint8_t[SHA384_DIGEST_LENGTH], SHA_CTX*);
-char* SHA384_End(SHA_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
-char* SHA384_Data(const cm_sha2_uint8_t*, size_t,
-		  char[SHA384_DIGEST_STRING_LENGTH]);
-
-void SHA512_Init(SHA_CTX*);
-void SHA512_Update(SHA_CTX*, const cm_sha2_uint8_t*, size_t);
-void SHA512_Final(cm_sha2_uint8_t[SHA512_DIGEST_LENGTH], SHA_CTX*);
-char* SHA512_End(SHA_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
-char* SHA512_Data(const cm_sha2_uint8_t*, size_t,
-		  char[SHA512_DIGEST_STRING_LENGTH]);
-
-#ifdef    __cplusplus
-}
-#endif /* __cplusplus */
-
-#endif /* __SHA2_H__ */
diff --git a/Source/cm_sha2_mangle.h b/Source/cm_sha2_mangle.h
deleted file mode 100644
index 3dce819a64..0000000000
--- a/Source/cm_sha2_mangle.h
+++ /dev/null
@@ -1,42 +0,0 @@
-/* Distributed under the OSI-approved BSD 3-Clause License.  See accompanying
-   file Copyright.txt or https://cmake.org/licensing for details.  */
-#ifndef cm_sha2_mangle_h
-#define cm_sha2_mangle_h
-
-/* Mangle sha2 symbol names to avoid possible conflict with
-   implementations in other libraries to which CMake links.  */
-#define SHA1_Data                  cmSHA1_Data
-#define SHA1_End                   cmSHA1_End
-#define SHA1_Final                 cmSHA1_Final
-#define SHA1_Init                  cmSHA1_Init
-#define SHA1_Internal_Transform    cmSHA1_Internal_Transform
-#define SHA1_Update                cmSHA1_Update
-#define SHA224_Data                cmSHA224_Data
-#define SHA224_End                 cmSHA224_End
-#define SHA224_Final               cmSHA224_Final
-#define SHA224_Init                cmSHA224_Init
-#define SHA224_Internal_Transform  cmSHA224_Internal_Transform
-#define SHA224_Update              cmSHA224_Update
-#define SHA256_Data                cmSHA256_Data
-#define SHA256_End                 cmSHA256_End
-#define SHA256_Final               cmSHA256_Final
-#define SHA256_Init                cmSHA256_Init
-#define SHA256_Internal_Init       cmSHA256_Internal_Init
-#define SHA256_Internal_Last       cmSHA256_Internal_Last
-#define SHA256_Internal_Transform  cmSHA256_Internal_Transform
-#define SHA256_Update              cmSHA256_Update
-#define SHA384_Data                cmSHA384_Data
-#define SHA384_End                 cmSHA384_End
-#define SHA384_Final               cmSHA384_Final
-#define SHA384_Init                cmSHA384_Init
-#define SHA384_Update              cmSHA384_Update
-#define SHA512_Data                cmSHA512_Data
-#define SHA512_End                 cmSHA512_End
-#define SHA512_Final               cmSHA512_Final
-#define SHA512_Init                cmSHA512_Init
-#define SHA512_Internal_Init       cmSHA512_Internal_Init
-#define SHA512_Internal_Last       cmSHA512_Internal_Last
-#define SHA512_Internal_Transform  cmSHA512_Internal_Transform
-#define SHA512_Update              cmSHA512_Update
-
-#endif
diff --git a/Utilities/Scripts/clang-format.bash b/Utilities/Scripts/clang-format.bash
index ad3b3a1c03..8e07c99eda 100755
--- a/Utilities/Scripts/clang-format.bash
+++ b/Utilities/Scripts/clang-format.bash
@@ -121,7 +121,7 @@ $git_ls -z -- '*.c' '*.cc' '*.cpp' '*.cxx' '*.h' '*.hh' '*.hpp' '*.hxx' |
   egrep -z -v '^Source/cmListFileLexer(\.in\.l|\.c)' |
 
   # Exclude third-party sources.
-  egrep -z -v '^Source/(cm_sha2|bindexplib)' |
+  egrep -z -v '^Source/bindexplib' |
   egrep -z -v '^Source/(kwsys|CursesDialog/form)/' |
   egrep -z -v '^Utilities/(KW|cm).*/' |
 
-- 
GitLab