Commit 8d32c830 authored by Andrew Maclean's avatar Andrew Maclean
Browse files

STYLE: Changed parameter names in Evaluate and EvaluateScalar

parent 8e2a4000
......@@ -16,7 +16,7 @@
#include "vtkObjectFactory.h"
#include "vtkMath.h"
vtkCxxRevisionMacro(vtkParametricConicSpiral, "1.1");
vtkCxxRevisionMacro(vtkParametricConicSpiral, "1.2");
vtkStandardNewMacro(vtkParametricConicSpiral);
vtkParametricConicSpiral::vtkParametricConicSpiral()
......@@ -50,31 +50,13 @@ vtkParametricConicSpiral::~vtkParametricConicSpiral()
{
}
void vtkParametricConicSpiral::Evaluate(double U[3], double Pt[3], double DU[9])
void vtkParametricConicSpiral::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = U[0];
double v = U[1];
double *Du = DU;
double *Dv = DU + 3;
// A parametric representation of a conic spiral surface
// Define:
// - X(u,v) = a*(1-v/(2*pi))*cos(n*v)*(1+cos(u))+c*cos(n*v)
// - Y(u,v) = a*(1-v/(2*pi))*sin(n*v)*(1+cos(u))+c*sin(n*v)
// - Z(u,v) = b*v/(2*pi)+a*(1-v/(2*pi))*sin(u)
//
// Where: a=0.2,b=1,c=0.1,n=2,u=0..2*pi},v=0..2*pi
//
// Then
// - S(u,v) = (X(u,v),Y(u,v),Z(u,v)) defines the surface.
//
// The derivatives are given by:
// - d(X(u,v)/du = -a*(1-1/2*v/pi)*cos(n*v)*sin(u)
// - d(X(u,v)/dv = -1/2*a/pi*cos(n*v)*(1+cos(u))-a*(1-1/2*v/pi)*sin(n*v)*n*(1+cos(u))-c*sin(n*v)*n
// - d(Y(u,v)/du = -a*(1-1/2*v/pi)*sin(n*v)*sin(u)
// - d(Y(u,v)/dv = -1/2*a/Pi*sin(n*v)*(1+cos(u))+a*(1-1/2*v/pi)*cos(n*v)*n*(1+cos(u))+c*cos(n*v)*n
// - d(Z(u,v)/du = a*(1-1/2*v/pi)*cos(u)
// - d(Z(u,v)/dv = 1/2*b/pi-1/2*a/pi*sin(u)
double u = uvw[0];
double v = uvw[1];
double *Du = Duvw;
double *Dv = Duvw + 3;
double inv2pi = 1.0/(2.0*vtkMath::Pi());
double cnv = cos(this->N*v);
......
......@@ -93,10 +93,10 @@ public:
// This function performs the mapping fn(u,v)->(x,y,x), returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)
void Evaluate(double u[3], double Pt[3], double Du[9]);
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of u,v,Pt,Du,Dv.
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
//
// u,v are the parameters with Pt being the the cartesian point,
// Du, Dv are the derivatives of this point with respect to u and v.
......@@ -107,7 +107,7 @@ public:
//
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
double EvaluateScalar(double u[3], double Pt[3], double Du[9]);
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricConicSpiral();
......
......@@ -16,7 +16,7 @@
#include "vtkObjectFactory.h"
#include "vtkMath.h"
vtkCxxRevisionMacro(vtkParametricFigure8Klein, "1.1");
vtkCxxRevisionMacro(vtkParametricFigure8Klein, "1.2");
vtkStandardNewMacro(vtkParametricFigure8Klein);
vtkParametricFigure8Klein::vtkParametricFigure8Klein()
......@@ -40,12 +40,12 @@ vtkParametricFigure8Klein::~vtkParametricFigure8Klein()
{
}
void vtkParametricFigure8Klein::Evaluate(double U[3], double Pt[3], double Duv[9])
void vtkParametricFigure8Klein::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = U[0];
double v = U[1];
double *Du = Duv;
double *Dv = Duv + 3;
double u = uvw[0];
double v = uvw[1];
double *Du = Duvw;
double *Dv = Duvw + 3;
double cu = cos(u);
double cu2 = cos(u / 2);
......
......@@ -92,10 +92,10 @@ public:
// This function performs the mapping fn(u,v)->(x,y,x), returning it as
// Pt. It also returns the partial derivatives Du and Dv. Pt = (x, y, z),
// Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)
virtual void Evaluate(double u[3], double Pt[3], double Du[9]);
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of u,v,Pt,Du,Dv.
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
//
// u,v are the parameters with Pt being the the cartesian point,
// Du, Dv are the derivatives of this point with respect to u and v.
......@@ -107,7 +107,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
virtual double EvaluateScalar(double u[3], double Pt[3], double Du[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricFigure8Klein();
......
......@@ -16,7 +16,7 @@
#include "vtkObjectFactory.h"
#include "vtkMath.h"
vtkCxxRevisionMacro(vtkParametricKlein, "1.1");
vtkCxxRevisionMacro(vtkParametricKlein, "1.2");
vtkStandardNewMacro(vtkParametricKlein);
vtkParametricKlein::vtkParametricKlein()
......@@ -39,12 +39,12 @@ vtkParametricKlein::~vtkParametricKlein()
{
}
void vtkParametricKlein::Evaluate(double U[3], double Pt[3], double Duv[9])
void vtkParametricKlein::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = U[0];
double v = U[1];
double *Du = Duv;
double *Dv = Duv + 3;
double u = uvw[0];
double v = uvw[1];
double *Du = Duvw;
double *Dv = Duvw + 3;
double cu = cos(u);
double su = sin(u);
......
......@@ -110,10 +110,10 @@ public:
// This function performs the mapping Evaluate(u)->(x), returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv).
virtual void Evaluate(double u[3], double Pt[3], double Du[9]);
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of u,Pt,Du.
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
//
// u[3] are the parameters with Pt being the the cartesian point,
// Du[9] are the derivatives of this point with respect to u and v.
......@@ -125,7 +125,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
virtual double EvaluateScalar(double u[3], double Pt[3], double Du[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricKlein();
......
......@@ -16,7 +16,7 @@
#include "vtkObjectFactory.h"
#include "vtkMath.h"
vtkCxxRevisionMacro(vtkParametricMobius, "1.1");
vtkCxxRevisionMacro(vtkParametricMobius, "1.2");
vtkStandardNewMacro(vtkParametricMobius);
vtkParametricMobius::vtkParametricMobius()
......@@ -40,12 +40,12 @@ vtkParametricMobius::~vtkParametricMobius()
{
}
void vtkParametricMobius::Evaluate(double U[3], double Pt[3], double Duv[9])
void vtkParametricMobius::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = U[0];
double v = U[1];
double *Du = Duv;
double *Dv = Duv+3;
double u = uvw[0];
double v = uvw[1];
double *Du = Duvw;
double *Dv = Duvw+3;
double cu = cos(u);
double cu2 = cos( u / 2 );
......
......@@ -77,10 +77,10 @@ public:
// This function performs the mapping fn(u,v)->(x,y,x), returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)
virtual void Evaluate(double u[3], double Pt[3], double Du[9]);
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of u,v,Pt,Du,Dv.
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
//
// u,v are the parameters with Pt being the the cartesian point,
// Du, Dv are the derivatives of this point with respect to u and v.
......@@ -92,7 +92,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
virtual double EvaluateScalar(double u[3], double Pt[3], double Du[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricMobius();
......
......@@ -17,7 +17,7 @@
#include "vtkMath.h"
#include <math.h>
vtkCxxRevisionMacro(vtkParametricSuperEllipsoid, "1.1");
vtkCxxRevisionMacro(vtkParametricSuperEllipsoid, "1.2");
vtkStandardNewMacro(vtkParametricSuperEllipsoid);
vtkParametricSuperEllipsoid::vtkParametricSuperEllipsoid() :
......@@ -45,12 +45,12 @@ vtkParametricSuperEllipsoid::~vtkParametricSuperEllipsoid()
{
}
void vtkParametricSuperEllipsoid::Evaluate(double U[3], double Pt[3], double Duv[9])
void vtkParametricSuperEllipsoid::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = U[0];
double v = U[1];
double *Du = Duv;
double *Dv = Duv + 3;
double u = uvw[0];
double v = uvw[1];
double *Du = Duvw;
double *Dv = Duvw + 3;
for ( int i = 0; i < 3; ++i)
{
......
......@@ -196,10 +196,10 @@ public:
// This function performs the mapping fn(u,v)->(x,y,x), returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)
void Evaluate(double u[3], double Pt[3], double Du[9]);
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of u,v,Pt,Du,Dv.
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
//
// u,v are the parameters with Pt being the the cartesian point,
// Du, Dv are the derivatives of this point with respect to u and v.
......@@ -211,7 +211,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
double EvaluateScalar(double u[3], double Pt[3], double Du[9]);
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricSuperEllipsoid();
......
......@@ -17,7 +17,7 @@
#include "vtkMath.h"
#include <math.h>
vtkCxxRevisionMacro(vtkParametricSuperToroid, "1.1");
vtkCxxRevisionMacro(vtkParametricSuperToroid, "1.2");
vtkStandardNewMacro(vtkParametricSuperToroid);
vtkParametricSuperToroid::vtkParametricSuperToroid() :
......@@ -48,12 +48,12 @@ vtkParametricSuperToroid::~vtkParametricSuperToroid()
}
void vtkParametricSuperToroid::Evaluate(double U[3], double Pt[3], double Duv[9])
void vtkParametricSuperToroid::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = U[0];
double v = U[1];
double *Du = Duv;
double *Dv = Duv + 3;
double u = uvw[0];
double v = uvw[1];
double *Du = Duvw;
double *Dv = Duvw + 3;
for ( int i = 0; i < 3; ++i)
{
......
......@@ -139,10 +139,10 @@ public:
// as Pt. It also returns the partial derivatives Du and Dv.
// Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)
// </pre>
void Evaluate(double u[3], double Pt[3], double Du[9]);
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of u,v,Pt,Du,Dv.
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
//
// u,v are the parameters with Pt being the the cartesian point, Du, Dv are
// the derivatives of this point with respect to u and v. Pt, Du, Dv are
......@@ -154,7 +154,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
double EvaluateScalar(double u[3], double Pt[3], double Du[9]);
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricSuperToroid();
......
......@@ -16,7 +16,7 @@
#include "vtkObjectFactory.h"
#include "vtkMath.h"
vtkCxxRevisionMacro(vtkParametricTorus, "1.1");
vtkCxxRevisionMacro(vtkParametricTorus, "1.2");
vtkStandardNewMacro(vtkParametricTorus);
vtkParametricTorus::vtkParametricTorus() :
......@@ -39,12 +39,12 @@ vtkParametricTorus::~vtkParametricTorus()
{
}
void vtkParametricTorus::Evaluate(double uv[3], double Pt[3], double Duv[9])
void vtkParametricTorus::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = uv[0];
double v = uv[1];
double *Du = Duv;
double *Dv = Duv + 3;
double u = uvw[0];
double v = uvw[1];
double *Du = Duvw;
double *Dv = Duvw + 3;
double cu = cos(u);
double su = sin(u);
......
......@@ -92,10 +92,10 @@ public:
// as Pt. It also returns the partial derivatives Du and Dv.
// Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)
//</pre>
virtual void Evaluate(double u[3], double Pt[3], double Du[9]);
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of u,Pt,Du.
// Calculate a user defined scalar using one or all of uvw,Pt,Duvw.
//
// u[3] are the parameters with Pt being the the Cartesian point,
// Du[9] are the derivatives of this point with respect to u and v.
......@@ -107,7 +107,7 @@ public:
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
virtual double EvaluateScalar(double u[3], double Pt[3], double Du[9]);
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricTorus();
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment