vtkFlyingEdges3D.cxx 53.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkFlyingEdges3D.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkFlyingEdges3D.h"

17
#include "vtkArrayListTemplate.h" // For processing attribute data
18
19
20
21
22
23
24
25
26
27
28
29
#include "vtkMath.h"
#include "vtkImageData.h"
#include "vtkCellArray.h"
#include "vtkInformation.h"
#include "vtkInformationIntegerVectorKey.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkFloatArray.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkMarchingCubesTriangleCases.h"
30
#include "vtkSMPTools.h"
31

Sean McBride's avatar
Sean McBride committed
32
#include <cmath>
33
34
35
36

vtkStandardNewMacro(vtkFlyingEdges3D);

//----------------------------------------------------------------------------
37
namespace {
38
39
// This templated class implements the heart of the algorithm.
// vtkFlyingEdges3D populates the information in this class and
40
// then invokes Contour() to actually initiate execution.
41
42
43
44
45
template <class T>
class vtkFlyingEdges3DAlgorithm
{
public:
  // Edge case table values.
Will Schroeder's avatar
Will Schroeder committed
46
  enum EdgeClass {
47
48
49
50
51
52
    Below = 0, //below isovalue
    Above = 1, //above isovalue
    LeftAbove = 1, //left vertex is above isovalue
    RightAbove = 2, //right vertex is above isovalue
    BothAbove = 3 //entire edge is above isovalue
  };
53
54

  // Dealing with boundary situations when processing volumes.
Will Schroeder's avatar
Will Schroeder committed
55
  enum CellClass {
56
57
58
    Interior = 0,
    MinBoundary = 1,
    MaxBoundary = 2
Will Schroeder's avatar
Will Schroeder committed
59
  };
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

  // Edge-based case table to generate output triangle primitives. It is
  // equivalent to the vertex-based Marching Cubes case table but provides
  // several computational advantages (parallel separability, more efficient
  // computation). This table is built from the MC case table when the class
  // is instantiated.
  unsigned char EdgeCases[256][16];

  // A table to map old edge ids (as defined from vtkMarchingCubesCases) into
  // the edge-based case table. This is so that the existing Marching Cubes
  // case tables can be reused.
  static const unsigned char EdgeMap[12];

  // A table that lists voxel point ids as a function of edge ids (edge ids
  // for edge-based case table).
  static const unsigned char VertMap[12][2];

  // A table describing vertex offsets (in index space) from the cube axes
  // origin for each of the eight vertices of a voxel.
  static const unsigned char VertOffsets[8][3];

  // This table is used to accelerate the generation of output triangles and
  // points. The EdgeUses array, a function of the voxel case number,
  // indicates which voxel edges intersect with the contour (i.e., require
  // interpolation). This array is filled in at instantiation during the case
  // table generation process.
  unsigned char EdgeUses[256][12];

  // Flags indicate whether a particular case requires voxel axes to be
  // processed. A cheap acceleration structure computed from the case
  // tables at the point of instantiation.
  unsigned char IncludesAxes[256];

  // Algorithm-derived data. XCases tracks the x-row edge cases. The
  // EdgeMetaData tracks information needed for parallel partitioning,
  // and to enable generation of the output primitives without using
  // a point locator.
  unsigned char *XCases;
  vtkIdType *EdgeMetaData;

  // Internal variables used by the various algorithm methods. Interfaces VTK
  // image data in a form more convenient to the algorithm.
Will Schroeder's avatar
Will Schroeder committed
102
  T        *Scalars;
103
  vtkIdType Dims[3];
Will Schroeder's avatar
Will Schroeder committed
104
105
  double    Origin[3];
  double    Spacing[3];
Will Schroeder's avatar
Will Schroeder committed
106
  vtkIdType NumberOfEdges;
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
  vtkIdType SliceOffset;
  int Min0;
  int Max0;
  int Inc0;
  int Min1;
  int Max1;
  int Inc1;
  int Min2;
  int Max2;
  int Inc2;

  // Output data. Threads write to partitioned memory.
  T         *NewScalars;
  vtkIdType *NewTris;
  float     *NewPoints;
  float     *NewGradients;
  float     *NewNormals;
124
  bool       NeedGradients;
125
126
  bool       InterpolateAttributes;
  ArrayList  Arrays;
127
128
129
130

  // Setup algorithm
  vtkFlyingEdges3DAlgorithm();

Will Schroeder's avatar
Will Schroeder committed
131
132
133
134
135
136
137
138
  // Adjust the origin to the lower-left corner of the volume (if necessary)
  void AdjustOrigin()
    {
    this->Origin[0] = this->Origin[0] + this->Spacing[0]*this->Min0;
    this->Origin[1] = this->Origin[1] + this->Spacing[1]*this->Min1;
    this->Origin[2] = this->Origin[2] + this->Spacing[2]*this->Min2;;
    }

139
  // The three main passes of the algorithm.
Will Schroeder's avatar
Will Schroeder committed
140
  void ProcessXEdge(double value, T const * const inPtr, vtkIdType row, vtkIdType slice); //PASS 1
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  void ProcessYZEdges(vtkIdType row, vtkIdType slice); //PASS 2
  void GenerateOutput(double value, T* inPtr, vtkIdType row, vtkIdType slice);//PASS 3

  // Place holder for now in case fancy bit fiddling is needed later.
  void SetXEdge(unsigned char *ePtr, unsigned char edgeCase)
    {*ePtr = edgeCase;}

  // Given the four x-edge cases defining this voxel, return the voxel case
  // number.
  unsigned char GetEdgeCase(unsigned char *ePtr[4])
    {
    return (*(ePtr[0]) | ((*(ePtr[1]))<<2) | ((*(ePtr[2]))<<4) | ((*(ePtr[3]))<<6));
    }

  // Return the number of contouring primitives for a particular edge case number.
  unsigned char GetNumberOfPrimitives(unsigned char eCase)
    { return this->EdgeCases[eCase][0]; }

  // Return an array indicating which voxel edges intersect the contour.
  unsigned char *GetEdgeUses(unsigned char eCase)
    { return this->EdgeUses[eCase]; }

  // Indicate whether voxel axes need processing for this case.
  unsigned char CaseIncludesAxes(unsigned char eCase)
    { return this->IncludesAxes[eCase]; }

  // Count edge intersections near volume boundaries.
  void CountBoundaryYZInts(unsigned char loc, unsigned char *edgeCases,
                           vtkIdType *eMD[4]);

  // Produce the output triangles for this voxel cell.
  void GenerateTris(unsigned char eCase, unsigned char numTris, vtkIdType *eIds,
                    vtkIdType &triId)
    {
      vtkIdType *tri;
      const unsigned char *edges = this->EdgeCases[eCase] + 1;
      for (int i=0; i < numTris; ++i, edges+=3)
        {
        tri = this->NewTris + 4*triId++;
        tri[0] = 3;
        tri[1] = eIds[edges[0]];
        tri[2] = eIds[edges[1]];
        tri[3] = eIds[edges[2]];
        }
    }

  // Compute gradient on interior point.
Will Schroeder's avatar
Will Schroeder committed
188
189
190
191
192
  void ComputeGradient(unsigned char loc, vtkIdType ijk[3],
                       T const * const s0_start, T const * const s0_end,
                       T const * const s1_start, T const * const s1_end,
                       T const * const s2_start, T const * const s2_end,
                       float g[3])
193
194
195
    {
      if ( loc == Interior )
        {
Will Schroeder's avatar
Will Schroeder committed
196
197
198
        g[0] = 0.5*( (*s0_start - *s0_end) / this->Spacing[0] );
        g[1] = 0.5*( (*s1_start - *s1_end) / this->Spacing[1] );
        g[2] = 0.5*( (*s2_start - *s2_end) / this->Spacing[2] );
199
200
201
        }
      else
        {
Will Schroeder's avatar
Will Schroeder committed
202
203
204
205
206
        this->ComputeBoundaryGradient(ijk,
                                      s0_start, s0_end,
                                      s1_start, s1_end,
                                      s2_start, s2_end,
                                      g);
207
208
209
        }
    }

Will Schroeder's avatar
Will Schroeder committed
210

211
  // Interpolate along a voxel axes edge.
Will Schroeder's avatar
Will Schroeder committed
212
213
214
215
216
217
  void InterpolateAxesEdge(double t, unsigned char loc,
                           float x0[3],
                           T const * const s,
                           const int incs[3],
                           float x1[3],
                           vtkIdType vId,
218
219
                           vtkIdType ijk0[3],
                           vtkIdType ijk1[3],
220
221
                           float g0[3])
    {
Will Schroeder's avatar
Will Schroeder committed
222

223
224
225
226
      float *x = this->NewPoints + 3*vId;
      x[0] = x0[0] + t*(x1[0]-x0[0]);
      x[1] = x0[1] + t*(x1[1]-x0[1]);
      x[2] = x0[2] + t*(x1[2]-x0[2]);
227

228
229
230
      if ( this->NeedGradients )
        {
        float gTmp[3], g1[3];
231
        this->ComputeGradient(loc,ijk1,
Will Schroeder's avatar
Will Schroeder committed
232
233
234
235
                              s + incs[0], s - incs[0],
                              s + incs[1], s - incs[1],
                              s + incs[2], s - incs[2],
                              g1);
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

        float *g = ( this->NewGradients ? this->NewGradients + 3*vId : gTmp );
        g[0] = g0[0] + t*(g1[0]-g0[0]);
        g[1] = g0[1] + t*(g1[1]-g0[1]);
        g[2] = g0[2] + t*(g1[2]-g0[2]);

        if ( this->NewNormals )
          {
          float *n = this->NewNormals + 3*vId;
          n[0] = -g[0];
          n[1] = -g[1];
          n[2] = -g[2];
          vtkMath::Normalize(n);
          }
        }//if normals or gradients required
251
252
253
254
255
256
257

      if ( this->InterpolateAttributes )
        {
        vtkIdType v0=ijk0[0] + ijk0[1]*incs[1] + ijk0[2]*incs[2];
        vtkIdType v1=ijk1[0] + ijk1[1]*incs[1] + ijk1[2]*incs[2];;
        this->Arrays.InterpolateEdge(v0,v1,t,vId);
        }
258
259
260
    }

  // Compute the gradient on a point which may be on the boundary of the volume.
Will Schroeder's avatar
Will Schroeder committed
261
262
263
264
265
  void ComputeBoundaryGradient(vtkIdType ijk[3],
                               T const * const s0_start, T const * const s0_end,
                               T const * const s1_start, T const * const s1_end,
                               T const * const s2_start, T const * const s2_end,
                               float g[3]);
266
267
268
269

  // Interpolate along an arbitrary edge, typically one that may be on the
  // volume boundary. This means careful computation of stuff requiring
  // neighborhood information (e.g., gradients).
Will Schroeder's avatar
Will Schroeder committed
270
271
272
273
274
  void InterpolateEdge(double value, vtkIdType ijk[3],
                       T const * const s, const int incs[3],
                       float x[3],
                       unsigned char edgeNum,
                       unsigned char const* const edgeUses,
275
276
277
                       vtkIdType *eIds);

  // Produce the output points on the voxel axes for this voxel cell.
Will Schroeder's avatar
Will Schroeder committed
278
279
280
281
  void GeneratePoints(double value, unsigned char loc, vtkIdType ijk[3],
                      T const * const sPtr, const int incs[3],
                      float x[3], unsigned char const * const edgeUses,
                      vtkIdType *eIds);
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

  // Helper function to set up the point ids on voxel edges.
  unsigned char InitVoxelIds(unsigned char *ePtr[4], vtkIdType *eMD[4],
                             vtkIdType *eIds)
    {
      unsigned char eCase = GetEdgeCase(ePtr);
      eIds[0] = eMD[0][0]; //x-edges
      eIds[1] = eMD[1][0];
      eIds[2] = eMD[2][0];
      eIds[3] = eMD[3][0];
      eIds[4] = eMD[0][1]; //y-edges
      eIds[5] = eIds[4] + this->EdgeUses[eCase][4];
      eIds[6] = eMD[2][1];
      eIds[7] = eIds[6] + this->EdgeUses[eCase][6];
      eIds[8] = eMD[0][2]; //z-edges
      eIds[9] = eIds[8] + this->EdgeUses[eCase][8];
      eIds[10] = eMD[1][2];
      eIds[11] = eIds[10] + this->EdgeUses[eCase][10];
      return eCase;
    }

  // Helper function to advance the point ids along voxel rows.
  void AdvanceVoxelIds(unsigned char eCase, vtkIdType *eIds)
    {
      eIds[0] += this->EdgeUses[eCase][0]; //x-edges
      eIds[1] += this->EdgeUses[eCase][1];
      eIds[2] += this->EdgeUses[eCase][2];
      eIds[3] += this->EdgeUses[eCase][3];
      eIds[4] += this->EdgeUses[eCase][4]; //y-edges
      eIds[5] = eIds[4] + this->EdgeUses[eCase][5];
      eIds[6] += this->EdgeUses[eCase][6];
      eIds[7] = eIds[6] + this->EdgeUses[eCase][7];
      eIds[8] += this->EdgeUses[eCase][8]; //z-edges
      eIds[9] = eIds[8] + this->EdgeUses[eCase][9];
      eIds[10] += this->EdgeUses[eCase][10];
      eIds[11] = eIds[10] + this->EdgeUses[eCase][11];
    }
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

  // Threading integration via SMPTools
  template <class TT> class Pass1
    {
    public:
      vtkFlyingEdges3DAlgorithm<TT> *Algo;
      double Value;
      Pass1(vtkFlyingEdges3DAlgorithm<TT> *algo, double value)
        {this->Algo = algo; this->Value = value;}
      void  operator()(vtkIdType slice, vtkIdType end)
        {
        vtkIdType row;
        TT *rowPtr, *slicePtr = this->Algo->Scalars + slice*this->Algo->Inc2;
        for ( ; slice < end; ++slice )
          {
          for (row=0, rowPtr=slicePtr; row < this->Algo->Dims[1]; ++row)
            {
            this->Algo->ProcessXEdge(this->Value, rowPtr, row, slice);
            rowPtr += this->Algo->Inc1;
            }//for all rows in this slice
          slicePtr += this->Algo->Inc2;
          }//for all slices in this batch
        }
    };
  template <class TT> class Pass2
    {
    public:
      Pass2(vtkFlyingEdges3DAlgorithm<TT> *algo)
        {this->Algo = algo;}
      vtkFlyingEdges3DAlgorithm<TT> *Algo;
      void  operator()(vtkIdType slice, vtkIdType end)
        {
        for ( ; slice < end; ++slice)
          {
          for ( vtkIdType row=0; row < (this->Algo->Dims[1]-1); ++row)
            {
            this->Algo->ProcessYZEdges(row, slice);
            }//for all rows in this slice
          }//for all slices in this batch
        }
    };
360
  template <class TT> class Pass4
361
362
    {
    public:
363
      Pass4(vtkFlyingEdges3DAlgorithm<TT> *algo, double value)
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        {this->Algo = algo; this->Value = value;}
      vtkFlyingEdges3DAlgorithm<TT> *Algo;
      double Value;
      void  operator()(vtkIdType slice, vtkIdType end)
        {
        vtkIdType row;
        vtkIdType *eMD0 = this->Algo->EdgeMetaData + slice*6*this->Algo->Dims[1];
        vtkIdType *eMD1 = eMD0 + 6*this->Algo->Dims[1];
        TT *rowPtr, *slicePtr = this->Algo->Scalars + slice*this->Algo->Inc2;
        for ( ; slice < end; ++slice )
          {
          // It's possible to skip entire slices if there is nothing to generate
          if ( eMD1[3] > eMD0[3] ) //there are triangle primitives!
            {
            for (row=0, rowPtr=slicePtr; row < this->Algo->Dims[1]-1; ++row)
              {
              this->Algo->GenerateOutput(this->Value, rowPtr, row, slice);
              rowPtr += this->Algo->Inc1;
              }//for all rows in this slice
            }//if there are triangles
          slicePtr += this->Algo->Inc2;
385
386
          eMD0 = eMD1;
          eMD1 = eMD0 + 6*this->Algo->Dims[1];
387
388
389
390
391
392
          }//for all slices in this batch
        }
    };

  // Interface between VTK and templated functions
  static void Contour(vtkFlyingEdges3D *self, vtkImageData *input,
393
                      vtkDataArray *inScalars,
394
                      int extent[6], vtkIdType *incs, T *scalars,
395
                      vtkPolyData *output, vtkPoints *newPts, vtkCellArray *newTris,
396
397
                      vtkDataArray *newScalars,vtkFloatArray *newNormals,
                      vtkFloatArray *newGradients);
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
};

//----------------------------------------------------------------------------
// Map MC edges numbering to use the saner FlyingEdges edge numbering scheme.
template <class T> const unsigned char vtkFlyingEdges3DAlgorithm<T>::
EdgeMap[12] = {0,5,1,4,2,7,3,6,8,9,10,11};

//----------------------------------------------------------------------------
// Map MC edges numbering to use the saner FlyingEdges edge numbering scheme.
template <class T> const unsigned char vtkFlyingEdges3DAlgorithm<T>::
VertMap[12][2] = {{0,1}, {2,3}, {4,5}, {6,7}, {0,2}, {1,3}, {4,6}, {5,7},
                  {0,4}, {1,5}, {2,6}, {3,7}};

//----------------------------------------------------------------------------
// The offsets of each vertex (in index space) from the voxel axes origin.
template <class T> const unsigned char vtkFlyingEdges3DAlgorithm<T>::
VertOffsets[8][3] = {{0,0,0}, {1,0,0}, {0,1,0}, {1,1,0},
                     {0,0,1}, {1,0,1}, {0,1,1}, {1,1,1}};

//----------------------------------------------------------------------------
// Instantiate and initialize key data members. Mostly we build the
// edge-based case table, and associated acceleration structures, from the
// marching cubes case table. Some of this code is borrowed shamelessly from
// vtkVoxel::Contour() method.
template <class T> vtkFlyingEdges3DAlgorithm<T>::
vtkFlyingEdges3DAlgorithm():XCases(NULL),EdgeMetaData(NULL),NewScalars(NULL),
Will Schroeder's avatar
Will Schroeder committed
424
                            NewTris(NULL),NewPoints(NULL),NewGradients(NULL),
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
                            NewNormals(NULL)
{
  int i, j, k, l, ii, eCase, index, numTris;
  static int vertMap[8] = {0,1,3,2,4,5,7,6};
  static int CASE_MASK[8] = {1,2,4,8,16,32,64,128};
  EDGE_LIST *edge;
  vtkMarchingCubesTriangleCases *triCase;
  unsigned char *edgeCase;

  // Initialize cases, increments, and edge intersection flags
  for (eCase=0; eCase<256; ++eCase)
    {
    for (j=0; j<16; ++j)
      {
      this->EdgeCases[eCase][j] = 0;
      }
    for (j=0; j<12; ++j)
      {
      this->EdgeUses[eCase][j] = 0;
      }
    this->IncludesAxes[eCase] = 0;
    }

  // The voxel, edge-based case table is a function of the four x-edge cases
  // that define the voxel. Here we convert the existing MC vertex-based case
  // table into a x-edge case table. Note that the four x-edges are ordered
  // (0->3): x, x+y, x+z, x+y+z; the four y-edges are ordered (4->7): y, y+x,
  // y+z, y+x+z; and the four z-edges are ordered (8->11): z, z+x, z+y,
  // z+x+y.
  for (l=0; l<4; ++l)
    {
    for (k=0; k<4; ++k)
      {
      for (j=0; j<4; ++j)
        {
        for (i=0; i<4; ++i)
          {
          //yes we could just count to (0->255) but where's the fun in that?
          eCase = i | (j<<2) | (k<<4) | (l<<6);
          for ( ii=0, index = 0; ii < 8; ++ii)
            {
            if ( eCase & (1<<vertMap[ii]) ) //map into ancient MC table
              {
              index |= CASE_MASK[ii];
              }
            }
          //Now build case table
          triCase = vtkMarchingCubesTriangleCases::GetCases() + index;
          edge = triCase->edges;
          for ( numTris=0, edge=triCase->edges; edge[0] > -1; edge += 3 )
            {//count the number of triangles
            numTris++;
            }
          if ( numTris > 0 )
            {
            edgeCase = this->EdgeCases[eCase];
            *edgeCase++ = numTris;
482
483
            for ( edge = triCase->edges; edge[0] > -1; edge += 3, edgeCase+=3 )
              {
484
              // Build new case table.
485
              edgeCase[0] = this->EdgeMap[edge[0]];
486
487
              edgeCase[1] = this->EdgeMap[edge[1]];
              edgeCase[2] = this->EdgeMap[edge[2]];
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
              }
            }
          }//x-edges
        }//x+y-edges
      }//x+z-edges
    }//x+y+z-edges

  // Okay now build the acceleration structure. This is used to generate
  // output points and triangles when processing a voxel x-row as well as to
  // perform other topological reasoning. This structure is a function of the
  // particular case number.
  for (eCase=0; eCase < 256; ++eCase)
    {
    edgeCase = this->EdgeCases[eCase];
    numTris = *edgeCase++;

    // Mark edges that are used by this case.
    for (i=0; i < numTris*3; ++i) //just loop over all edges
      {
      this->EdgeUses[eCase][edgeCase[i]] = 1;
      }

    this->IncludesAxes[eCase] = this->EdgeUses[eCase][0] |
      this->EdgeUses[eCase][4] | this->EdgeUses[eCase][8];

    }//for all cases
}

//----------------------------------------------------------------------------
// Count intersections along voxel axes. When traversing the volume across
// x-edges, the voxel axes on the boundary may be undefined near boundaries
// (because there are no fully-formed cells). Thus the voxel axes on the
// boundary are treated specially.
template <class T> void vtkFlyingEdges3DAlgorithm<T>::
CountBoundaryYZInts(unsigned char loc, unsigned char *edgeUses,
                    vtkIdType *eMD[4])
{
  switch (loc)
    {
    case 2: //+x boundary
      eMD[0][1] += edgeUses[5];
      eMD[0][2] += edgeUses[9];
      break;
    case 8: //+y
      eMD[1][2] += edgeUses[10];
      break;
    case 10://+x +y
      eMD[0][1] += edgeUses[5];
      eMD[0][2] += edgeUses[9];
      eMD[1][2] += edgeUses[10];
      eMD[1][2] += edgeUses[11];
      break;
    case 32://+z
      eMD[2][1] += edgeUses[6];
      break;
    case 34: //+x +z
      eMD[0][1] += edgeUses[5];
      eMD[0][2] += edgeUses[9];
      eMD[2][1] += edgeUses[6];
      eMD[2][1] += edgeUses[7];
      break;
    case 40: //+y +z
      eMD[2][1] += edgeUses[6];
      eMD[1][2] += edgeUses[10];
      break;
    case 42: //+x +y +z happens no more than once per volume
      eMD[0][1] += edgeUses[5];
      eMD[0][2] += edgeUses[9];
      eMD[1][2] += edgeUses[10];
      eMD[1][2] += edgeUses[11];
      eMD[2][1] += edgeUses[6];
      eMD[2][1] += edgeUses[7];
      break;
    default: //uh-oh shouldn't happen
      break;
    }
}

//----------------------------------------------------------------------------
// Compute the gradient when the point may be near the boundary of the
// volume.
template <class T> void vtkFlyingEdges3DAlgorithm<T>::
Will Schroeder's avatar
Will Schroeder committed
570
571
572
573
574
ComputeBoundaryGradient(vtkIdType ijk[3],
                        T const * const s0_start, T const * const s0_end,
                        T const * const s1_start, T const * const s1_end,
                        T const * const s2_start, T const * const s2_end,
                        float g[3])
575
{
Will Schroeder's avatar
Will Schroeder committed
576
577
  const T* s = s0_start - this->Inc0;

578
579
  if ( ijk[0] == 0 )
    {
Will Schroeder's avatar
Will Schroeder committed
580
    g[0] = (*s0_start - *s) / this->Spacing[0];
581
582
583
    }
  else if ( ijk[0] >= (this->Dims[0]-1) )
    {
Will Schroeder's avatar
Will Schroeder committed
584
    g[0] = (*s - *s0_end) / this->Spacing[0];
585
586
587
    }
  else
    {
Will Schroeder's avatar
Will Schroeder committed
588
    g[0] = 0.5 * ( (*s0_start - *s0_end) / this->Spacing[0] );
589
590
591
592
    }

  if ( ijk[1] == 0 )
    {
Will Schroeder's avatar
Will Schroeder committed
593
    g[1] = (*s1_start - *s) / this->Spacing[1];
594
595
596
    }
  else if ( ijk[1] >= (this->Dims[1]-1) )
    {
Will Schroeder's avatar
Will Schroeder committed
597
    g[1] = (*s - *s1_end) / this->Spacing[1];
598
599
600
    }
  else
    {
Will Schroeder's avatar
Will Schroeder committed
601
    g[1] = 0.5 * ( (*s1_start - *s1_end) / this->Spacing[1] );
602
603
604
605
    }

  if ( ijk[2] == 0 )
    {
Will Schroeder's avatar
Will Schroeder committed
606
    g[2] = (*s2_start - *s) / this->Spacing[2];
607
608
609
    }
  else if ( ijk[2] >= (this->Dims[2]-1) )
    {
Will Schroeder's avatar
Will Schroeder committed
610
    g[2] = (*s - *s2_end) / this->Spacing[2];
611
612
613
    }
  else
    {
Will Schroeder's avatar
Will Schroeder committed
614
    g[2] = 0.5 * ( (*s2_start - *s2_end) / this->Spacing[2] );
615
616
617
618
619
    }
}

//----------------------------------------------------------------------------
// Interpolate a new point along a boundary edge. Make sure to consider
620
// proximity to the boundary when computing gradients, etc.
621
template <class T> void vtkFlyingEdges3DAlgorithm<T>::
Will Schroeder's avatar
Will Schroeder committed
622
623
624
625
626
627
InterpolateEdge(double value, vtkIdType ijk[3],
                T const * const s,
                const int incs[3],
                float x[3],
                unsigned char edgeNum,
                unsigned char const * const edgeUses,
628
629
630
631
632
633
634
635
636
637
                vtkIdType *eIds)
{
  // if this edge is not used then get out
  if ( ! edgeUses[edgeNum] )
    {
    return;
    }

  // build the edge information
  const unsigned char *vertMap = this->VertMap[edgeNum];
Will Schroeder's avatar
Will Schroeder committed
638

639
640
641
642
643
  float x0[3], x1[3];
  vtkIdType ijk0[3], ijk1[3], vId=eIds[edgeNum];
  int i;

  const unsigned char *offsets = this->VertOffsets[vertMap[0]];
Will Schroeder's avatar
Will Schroeder committed
644
645
646
  T const * const s0 = s + offsets[0]*incs[0] +
                           offsets[1]*incs[1] +
                           offsets[2]*incs[2];
647
648
649
650
651
652
653
  for (i=0; i<3; ++i)
    {
    ijk0[i] = ijk[i] + offsets[i];
    x0[i] = x[i] + offsets[i]*this->Spacing[i];
    }

  offsets = this->VertOffsets[vertMap[1]];
Will Schroeder's avatar
Will Schroeder committed
654
655
656
  T const * const s1 = s + offsets[0]*incs[0] +
                           offsets[1]*incs[1] +
                           offsets[2]*incs[2];
657
658
659
660
661
662
663
664
665
666
667
668
  for (i=0; i<3; ++i)
    {
    ijk1[i] = ijk[i] + offsets[i];
    x1[i] = x[i] + offsets[i]*this->Spacing[i];
    }

  // Okay interpolate
  double t = (value - *s0) / (*s1 - *s0);
  float *xPtr = this->NewPoints + 3*vId;
  xPtr[0] = x0[0] + t*(x1[0]-x0[0]);
  xPtr[1] = x0[1] + t*(x1[1]-x0[1]);
  xPtr[2] = x0[2] + t*(x1[2]-x0[2]);
669

670
671
672
  if ( this->NeedGradients )
    {
    float gTmp[3], g0[3], g1[3];
Will Schroeder's avatar
Will Schroeder committed
673
674
675
676
677
678
679
680
681
682
    this->ComputeBoundaryGradient(ijk0,
                                  s0+incs[0], s0-incs[0],
                                  s0+incs[1], s0-incs[1],
                                  s0+incs[2], s0-incs[2],
                                  g0);
    this->ComputeBoundaryGradient(ijk1,
                                  s1+incs[0], s1-incs[0],
                                  s1+incs[1], s1-incs[1],
                                  s1+incs[2], s1-incs[2],
                                  g1);
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

    float *g = ( this->NewGradients ? this->NewGradients + 3*vId : gTmp );
    g[0] = g0[0] + t*(g1[0]-g0[0]);
    g[1] = g0[1] + t*(g1[1]-g0[1]);
    g[2] = g0[2] + t*(g1[2]-g0[2]);

    if ( this->NewNormals )
      {
      float *n = this->NewNormals + 3*vId;
      n[0] = -g[0];
      n[1] = -g[1];
      n[2] = -g[2];
      vtkMath::Normalize(n);
      }
    }//if normals or gradients required
698
699
700
701
702
703
704

  if ( this->InterpolateAttributes )
    {
    vtkIdType v0=ijk0[0] + ijk0[1]*incs[1] + ijk0[2]*incs[2];
    vtkIdType v1=ijk1[0] + ijk1[1]*incs[1] + ijk1[2]*incs[2];;
    this->Arrays.InterpolateEdge(v0,v1,t,vId);
    }
705
706
707
708
709
710
}

//----------------------------------------------------------------------------
// Generate the output points and optionally normals, gradients and
// interpolate attributes.
template <class T> void vtkFlyingEdges3DAlgorithm<T>::
Will Schroeder's avatar
Will Schroeder committed
711
712
713
714
715
GeneratePoints(double value, unsigned char loc, vtkIdType ijk[3],
               T const * const sPtr, const int incs[3],
               float x[3],
               unsigned char const * const edgeUses,
               vtkIdType *eIds)
716
717
{
  // Create a slightly faster path for voxel axes interior to the volume.
Will Schroeder's avatar
Will Schroeder committed
718
  float g0[3];
719
720
  if ( this->NeedGradients )
    {
Will Schroeder's avatar
Will Schroeder committed
721
722
723
724
725
    this->ComputeGradient(loc,ijk,
                          sPtr + incs[0], sPtr - incs[0],
                          sPtr + incs[1], sPtr - incs[1],
                          sPtr + incs[2], sPtr - incs[2],
                          g0);
726
    }
Will Schroeder's avatar
Will Schroeder committed
727

728
  // Interpolate the cell axes edges
Will Schroeder's avatar
Will Schroeder committed
729
  for(int i=0; i < 3; ++i)
730
    {
Will Schroeder's avatar
Will Schroeder committed
731
732
733
734
735
736
    if(edgeUses[i*4])
      {
      //edgesUses[0] == x axes edge
      //edgesUses[4] == y axes edge
      //edgesUses[8] == z axes edge
      float x1[3] = {x[0], x[1], x[2] }; x1[i] += this->Spacing[i];
737
      vtkIdType ijk1[3] = { ijk[0], ijk[1], ijk[2] }; ++ijk1[i];
Will Schroeder's avatar
Will Schroeder committed
738
739
740

      T const * const sPtr2 = (sPtr+incs[i]);
      double t = (value - *sPtr) / (*sPtr2 - *sPtr);
741
      this->InterpolateAxesEdge(t, loc, x, sPtr2, incs, x1, eIds[i*4], ijk, ijk1, g0);
Will Schroeder's avatar
Will Schroeder committed
742
      }
743
744
    }

745
746
747
748
749
750
751
752
753
  // On the boundary cells special work has to be done to cover the partial
  // cell axes. These are boundary situations where the voxel axes is not
  // fully formed. These situations occur on the +x,+y,+z volume
  // boundaries. (The other cases fall through the default: case which is
  // expected.)
  //
  // Note that loc is one of 27 regions in the volume, with (0,1,2)
  // indicating (interior, min, max) along coordinate axes.
  switch (loc)
754
    {
755
    case 2: case 6: case 18: case 22: //+x
Will Schroeder's avatar
Will Schroeder committed
756
757
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 5, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 9, edgeUses, eIds);
758
      break;
759
    case 8: case 9: case 24: case 25: //+y
Will Schroeder's avatar
Will Schroeder committed
760
761
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 1, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 10, edgeUses, eIds);
762
      break;
763
764
765
766
767
    case 32: case 33: case 36: case 37: //+z
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 2, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 6, edgeUses, eIds);
      break;
    case 10: case 26: //+x +y
Will Schroeder's avatar
Will Schroeder committed
768
769
770
771
772
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 1, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 5, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 9, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 10, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 11, edgeUses, eIds);
773
      break;
774
    case 34: case 38: //+x +z
Will Schroeder's avatar
Will Schroeder committed
775
776
777
778
779
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 2, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 5, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 9, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 6, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 7, edgeUses, eIds);
780
      break;
781
    case 40: case 41: //+y +z
Will Schroeder's avatar
Will Schroeder committed
782
783
784
785
786
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 1, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 2, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 3, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 6, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 10, edgeUses, eIds);
787
788
      break;
    case 42: //+x +y +z happens no more than once per volume
Will Schroeder's avatar
Will Schroeder committed
789
790
791
792
793
794
795
796
797
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 1, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 2, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 3, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 5, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 9, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 10, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 11, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 6, edgeUses, eIds);
      this->InterpolateEdge(value, ijk, sPtr, incs, x, 7, edgeUses, eIds);
798
      break;
799
    default: //interior, or -x,-y,-z boundaries
800
801
802
803
804
805
806
807
808
809
810
      return;
    }
}

//----------------------------------------------------------------------------
// PASS 1: Process a single volume x-row (and all of the voxel edges that
// compose the row). Determine the x-edges case classification, count the
// number of x-edge intersections, and figure out where intersections along
// the x-row begins and ends (i.e., gather information for computational
// trimming).
template <class T> void vtkFlyingEdges3DAlgorithm<T>::
Will Schroeder's avatar
Will Schroeder committed
811
ProcessXEdge(double value, T const* const inPtr, vtkIdType row, vtkIdType slice)
812
813
814
815
{
  vtkIdType nxcells=this->Dims[0]-1;
  vtkIdType minInt=nxcells, maxInt = 0;
  vtkIdType *edgeMetaData;
816
  unsigned char edgeCase, *ePtr=this->XCases+slice*this->SliceOffset+row*nxcells;
817
  double s0, s1 = static_cast<double>(*inPtr);
818
  vtkIdType sum = 0;
819
820
821
822

  //run along the entire x-edge computing edge cases
  edgeMetaData = this->EdgeMetaData + (slice*this->Dims[1] + row)*6;
  std::fill_n(edgeMetaData, 6, 0);
Will Schroeder's avatar
Will Schroeder committed
823
824
825
826

  //pull this out help reduce false sharing
  vtkIdType inc0 = this->Inc0;

827
828
829
  for (vtkIdType i=0; i < nxcells; ++i, ++ePtr)
    {
    s0 = s1;
Will Schroeder's avatar
Will Schroeder committed
830
    s1 = static_cast<double>(*(inPtr + (i+1)*inc0));
831

Will Schroeder's avatar
Will Schroeder committed
832
833
834
835
    if (s0 >= value)
      {
      edgeCase = vtkFlyingEdges3DAlgorithm::LeftAbove;
      }
836
837
838
839
    else
      {
      edgeCase = vtkFlyingEdges3DAlgorithm::Below;
      }
Will Schroeder's avatar
Will Schroeder committed
840
841
842
843
    if( s1 >= value)
      {
      edgeCase |= vtkFlyingEdges3DAlgorithm::RightAbove;
      }
844
845
846
847
848
849
850

    this->SetXEdge(ePtr, edgeCase);

    // if edge intersects contour
    if ( edgeCase == vtkFlyingEdges3DAlgorithm::LeftAbove ||
         edgeCase == vtkFlyingEdges3DAlgorithm::RightAbove )
      {
Will Schroeder's avatar
Will Schroeder committed
851
      ++sum; //increment number of intersections along x-edge
852
853
854
855
      if ( i < minInt )
        {
        minInt = i;
        }
856
857
858
859
      maxInt = i + 1;
      }//if contour interacts with this x-edge
    }//for all x-cell edges along this x-edge

Will Schroeder's avatar
Will Schroeder committed
860
861
  edgeMetaData[0] += sum; //write back the number of intersections along x-edge

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
  // The beginning and ending of intersections along the edge is used for
  // computational trimming.
  edgeMetaData[4] = minInt; //where intersections start along x edge
  edgeMetaData[5] = maxInt; //where intersections end along x edge
}

//----------------------------------------------------------------------------
// PASS 2: Process a single x-row of voxels. Count the number of y- and
// z-intersections by topological reasoning from x-edge cases. Determine the
// number of primitives (i.e., triangles) generated from this row. Use
// computational trimming to reduce work. Note *ePtr[4] is four pointers to
// four x-edge rows that bound the voxel x-row and which contain edge case
// information.
template <class T> void vtkFlyingEdges3DAlgorithm<T>::
ProcessYZEdges(vtkIdType row, vtkIdType slice)
{
  // Grab the four edge cases bounding this voxel x-row.
Will Schroeder's avatar
Will Schroeder committed
879
  unsigned char *ePtr[4], ec0, ec1, ec2, ec3, xInts=1;
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
  ePtr[0] = this->XCases + slice*this->SliceOffset + row*(this->Dims[0]-1);
  ePtr[1] = ePtr[0] + this->Dims[0]-1;
  ePtr[2] = ePtr[0] + this->SliceOffset;
  ePtr[3] = ePtr[2] + this->Dims[0]-1;

  // Grab the edge meta data surrounding the voxel row.
  vtkIdType *eMD[4];
  eMD[0] = this->EdgeMetaData + (slice*this->Dims[1] + row)*6; //this x-edge
  eMD[1] = eMD[0] + 6; //x-edge in +y direction
  eMD[2] = eMD[0] + this->Dims[1]*6; //x-edge in +z direction
  eMD[3] = eMD[2] + 6; //x-edge in +y+z direction

  // Determine whether this row of x-cells needs processing. If there are no
  // x-edge intersections, and the state of the four bounding x-edges is the
  // same, then there is no need for processing.
  if ( (eMD[0][0] | eMD[1][0] | eMD[2][0] | eMD[3][0]) == 0 ) //any x-ints?
    {
    if ( *(ePtr[0]) == *(ePtr[1]) &&  *(ePtr[1]) == *(ePtr[2]) &&
         *(ePtr[2]) == *(ePtr[3]) )
      {
      return; //there are no y- or z-ints, thus no contour, skip voxel row
      }
Will Schroeder's avatar
Will Schroeder committed
902
903
904
905
    else
      {
      xInts = 0; //there are y- or z- edge ints however
      }
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
    }

  // Determine proximity to the boundary of volume. This information is used
  // to count edge intersections in boundary situations.
  unsigned char loc, yLoc, zLoc, yzLoc;
  yLoc = (row >= (this->Dims[1]-2) ? MaxBoundary : Interior);
  zLoc = (slice >= (this->Dims[2]-2) ? MaxBoundary : Interior);
  yzLoc = (yLoc << 2) | (zLoc << 4);

  // The trim edges may need adjustment if the contour travels between rows
  // of x-edges (without intersecting these x-edges). This means checking
  // whether the trim faces at (xL,xR) made up of the y-z edges intersect the
  // contour. Basically just an intersection operation. Determine the voxel
  // row trim edges, need to check all four x-edges.
  vtkIdType xL=eMD[0][4], xR=eMD[0][5];
  vtkIdType i;
Will Schroeder's avatar
Will Schroeder committed
922
  if ( xInts )
923
    {
Will Schroeder's avatar
Will Schroeder committed
924
925
926
927
928
    for (i=1; i < 4; ++i)
      {
      xL = ( eMD[i][4] < xL ? eMD[i][4] : xL);
      xR = ( eMD[i][5] > xR ? eMD[i][5] : xR);
      }
929

Will Schroeder's avatar
Will Schroeder committed
930
    if ( xL > 0 ) //if trimmed in the -x direction
931
      {
Will Schroeder's avatar
Will Schroeder committed
932
933
934
935
936
937
938
      ec0 = *(ePtr[0]+xL); ec1 = *(ePtr[1]+xL);
      ec2 = *(ePtr[2]+xL); ec3 = *(ePtr[3]+xL);
      if ( (ec0 & 0x1) != (ec1 & 0x1) || (ec1 & 0x1) != (ec2 & 0x1) ||
           (ec2 & 0x1) != (ec3 & 0x1) )
        {
        xL = eMD[0][4] = 0; //reset left trim
        }
939
940
      }

Will Schroeder's avatar
Will Schroeder committed
941
    if ( xR < (this->Dims[0]-1) ) //if trimmed in the +x direction
942
      {
Will Schroeder's avatar
Will Schroeder committed
943
944
945
946
947
948
949
      ec0 = *(ePtr[0]+xR); ec1 = *(ePtr[1]+xR);
      ec2 = *(ePtr[2]+xR); ec3 = *(ePtr[3]+xR);
      if ( (ec0 & 0x2) != (ec1 & 0x2) || (ec1 & 0x2) != (ec2 & 0x2) ||
           (ec2 & 0x2) != (ec3 & 0x2) )
        {
        xR = eMD[0][5] = this->Dims[0]-1; //reset right trim
        }
950
951
      }
    }
Will Schroeder's avatar
Will Schroeder committed
952
953
954
955
956
  else //contour cuts through without intersecting x-edges, reset trim edges
    {
    xL = eMD[0][4] = 0;
    xR = eMD[0][5] = this->Dims[0]-1;
    }
957
958
959
960
961
962

  // Okay run along the x-voxels and count the number of y- and
  // z-intersections. Here we are just checking y,z edges that make up the
  // voxel axes. Also check the number of primitives generated.
  unsigned char *edgeUses, eCase, numTris;
  ePtr[0] += xL; ePtr[1] += xL; ePtr[2] += xL; ePtr[3] += xL;
963
  const vtkIdType dim0Wall = this->Dims[0]-2;
964
965
966
967
968
969
970
971
972
973
974
975
976
977
  for (i=xL; i < xR; ++i) //run along the trimmed x-voxels
    {
    eCase = this->GetEdgeCase(ePtr);
    if ( (numTris=this->GetNumberOfPrimitives(eCase)) > 0 )
      {
      // Okay let's increment the triangle count.
      eMD[0][3] += numTris;

      // Count the number of y- and z-points to be generated. Pass# 1 counted
      // the number of x-intersections along the x-edges. Now we count all
      // intersections on the y- and z-voxel axes.
      edgeUses = this->GetEdgeUses(eCase);
      eMD[0][1] += edgeUses[4]; //y-voxel axes edge always counted
      eMD[0][2] += edgeUses[8]; //z-voxel axes edge always counted
978
      loc = yzLoc | (i >= dim0Wall ? MaxBoundary : Interior);
979
980
981
982
983
984
985
986
987
988
989
990
      if ( loc != 0 )
        {
        this->CountBoundaryYZInts(loc,edgeUses,eMD);
        }
      }//if cell contains contour

    // advance the four pointers along voxel row
    ePtr[0]++; ePtr[1]++; ePtr[2]++; ePtr[3]++;
    }//for all voxels along this x-edge
}

//----------------------------------------------------------------------------
991
992
993
// PASS 4: Process the x-row cells to generate output primitives, including
// point coordinates and triangles. This is the fourth and final pass of the
// algorithm.
994
995
996
997
998
999
1000
template <class T> void vtkFlyingEdges3DAlgorithm<T>::
GenerateOutput(double value, T* rowPtr, vtkIdType row, vtkIdType slice)
{
  // Grab the edge meta data surrounding the voxel row.
  vtkIdType *eMD[4];
  eMD[0] = this->EdgeMetaData + (slice*this->Dims[1] + row)*6; //this x-edge
  eMD[1] = eMD[0] + 6; //x-edge in +y direction